PG/IVS/MTM/499/24(Pr.) (New)

M.Sc. 4th Semester Examination, 2024 APPLIED MATHEMATICS

(Lab: Soft computing techniques using MATLAB)

(Practical)

PAPER - MTM-499 (New)

Full Marks: 25

Time: 2 hours

The questions are of equal value

Answer one question which is selected by lottery

1. Implement the selection operator of Binary coded GA in MATLAB for the optimization problem $Max f(x, y) = y \sin x - x \sin y$, $-5 \le x, y \le 5$.

- 2. Implement the cross-over operator of Binary coded GA in MATLAB for the optimization problem $Max f(x, y) = \sin x + \sin y$, $0 \le x, y \le 10$.
- 3. Implement the mutation operator of Binary coded GA in MATLAB for the optimization problem $Max f(x,y) = xe^{-x^2 y^2}$, $-3 \le x, y \le 3$.
- 4. Implement the selection operator of Real coded GA in MATLAB for the optimization problem $Max f(x, y) = y \sin x x \sin y$, $-5 \le x, y \le 5$.
- 5. Implement the cross-over operator of Real coded GA in MATLAB for the optimization problem $Max f(x, y) = \sin x + \sin y$, $0 \le x, y \le 10$.

- 6. Implement the mutation operator of Real coded GA in MATLAB for the optimization problem $Max f(x,y) = xe^{-x^2 y^2}$, $-3 \le x, y \le 3$.
- 7. Write a MATLAB program to generate the output of logic AND function by McCulloch-Pitts Neuron Model with threshold value 2.
- 8. Write a MATLAB program to generate the output of logic XOR function by McCulloch-Pitts Neuron Model with threshold value 1.
- 9. Write a MATLAB program to generate the output of logic ANDNOT function by McCulloch-Pitts Neuron Model.
- 10. Write a MATLAB program to find the weights required to perform the following classifications using Hebbian Learning Rule. Vectors (1,1,1,1) and (-1,1,-1,-1) are members of class with target value 1; Vectors (1,1,1,-1) and (1,-1,-1,1) are members of class with target value -1.

- 11. Write a MATLAB program to train logic XOR function with bipolar inputs and targets using Hebbian Learning Rule.
- 12. Write a MATLAB program to train logic AND function with binary inputs and bipolar targets using Perceptron Learning Algorithm.
 - 13. Write a MATLAB program to find intersection, union, and complement of two given fuzzy relations.
 - 14. Write a MATLAB program to find the maxmin composition of two fuzzy relations.

[Notebook & Viva: 05]