Total Pages-6 PG/IVS/MTM/402(U-1&2)/24 (New)

# M.Sc. 4th Semester Examination, 2024 APPLIED MATHEMATICS

PAPER - MTM-402(U-1&2)(New)

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

MTM- 402(Unit-1)

(Fuzzy Mathematics)

[ Marks : 20 ]

GROUP - A

1. Answer any two questions:

 $2 \times 2$ 

- (a) What is the difference between random uncertainty and non-random uncertainty?
- (b) Define the height of a fuzzy set, convex fuzzy set and fuzzy number.
- (c) Suppose (10, 14, 19) is a triangular fuzzy number. Write its membership function and draw its diagram.
- (d) Simplify the following expression 2(5, 6, 8, 12) + 3(-1, 3, 4) 5[-3, 2] + 8.

## GROUP - B

2. Answer any two questions:

- $4 \times 2$
- (a) For the following three interval numbers [1, 4], [2, 5] and [3, 8] show by Zadeh's extension principle that the distributive law does not hold.
- (b) Using  $\alpha$ -cut method, show that 2(-1, 5, 7) + 3(0, 3, 4) = (-2, 19, 26)

- (c) State and illustrate the Bellman and Zadeh's principle for fuzzy LPP.
- (d) Prove De Morgan's laws for fuzzy sets.

#### GROUP - C

3. Answer any one question:

 $8 \times 1$ 

- (a) State Zadeh's extension principle. Using Zadeh's extension principle, prove that [1,3] + [5,8] = [6,11].
- (b) Convert the following fuzzy LPPs to equivalent crisp LPP by Verdegay's approach.

Maximum 
$$z = x_1 + 3x_2$$
  
subject to  $2x_1 + 4x_2 \le 4$  to 8  
 $2x_1 + 3x_2 \le 1$  to 3  
 $0.2x_1 + 2x_2 \le 9$  to 11  
 $x_i \ge 0, j = 1, 2$ .

## MTM- 402(Unit-2)

( Magneto Hydro-Dynamics )

[ Marks : 20 ]

#### GROUP - A

- 1. Answer any *two* questions:  $2 \times 2$
- (a) Describe the working principle of MFD submarines.
  - (b) Define Lorentz force.
  - (c) Define the terms 'permittivity' and 'drift velociy'.
  - (d) Define magnetic Reynolds number and explain its physical significance.

### GROUP - B

2. Answer any two questions:

4×2

- (a) Write down the Maxwell's electromagnetic field equations of moving media and hence deduce the magnetic induction equation.
- (b) State and prove Ferraro's law of isorotation.
- (c) Show that for B to be a force free magnetic field at all times it has to satisfy the integrability condition  $B \times (\nabla \alpha. \nabla) B = 0$ , in addition to satisfying the basic equation of force-free magnetic field (symbols have their usual meaning).
- (d) Define the terms Alfven's velocity and Alfven's waves. Hence, derive the speed of propagation is  $\sqrt{c^2 + V_A^2}$  for magneto hydrodynamic wave, where symbols have their usual meaning.

#### GROUP - C

# 3. Answer any one question:

 $8 \times 1$ 

(a) A viscous incompressible conducting fluid

of uniform density are confined between a channel made by an infinitely conducting horizontal plate z = -L (lower) and a horizontal infinitely long non-conducting plate z = L (upper). Assume that a uniform magnetic field  $H_0$  acts perpendicular to the plates. Both the plates are in rest. Find the velocity of the fluid and the magnetic field. Draw a sketch of the velocity profiles for various values of the Hartmann number.

- (b) (i) Define magnetic energy and further, find the rate of change of magnetic energy in magneto-hydrodynamic.
  - (ii) Give the mathematical formulation of MHD flow past a porous plate and derive its velocity expression. 3 + 5

[ Internal Assessment — 10 Marks ]