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ABSTRACT 

A mathematical model based on relativistic approach is proposed for 
the determination of transmission coefficient within the energy range 
of ε <V 0 , ε = V 0  and ε >V 0  for a multibarrier GaAs/Al y Ga y−1 As 

heterostructure. The effect of number of barriers and number of cells in 
the well and barrier regions on the resonant energies are studied in 
detail. An additional resonant peak in resonant energy spectrum 
indicated the presence of a new surface state. 
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1. Introduction 
The resonant tunneling of an electron wave through multiple potential barriers is one 

of the basic phenomena in quantum mechanics. It is known that, when the number of 
barriers is greater than one, for certain incident energies the electrons tunnel out without 
any significant attenuation in their intensity. In a multi barrier structure (MBS), the 
transmission coefficient is the relative probability of an incident electron crossing the 
multiple barriers. Resonant tunneling in the MBS corresponds to unit transmission 
coefficient across the structure. One of the most striking features of the multi-barrier 
systems is the occurrence of quasi-level resonant tunneling energy states. Incident 
electrons on the MBS with energies equal to any one of these quasilevel resonant energy 
states, suffers resonant tunneling. Resonant tunneling is a consequence of the phase 
coherence of the electron waves in the quantum wells of the MBS. These quasi level 
resonant energy states group themselves into tunneling energy bands separated by 
forbidden gaps. Each allowed energy band comprises (N-1) number of resonant energy 
states; N being the number of barriers in the MBS.  
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   Research activities on multibarrier resonant tunneling have gained momentum on both 
theoretical and experimental front since the pioneering   work of Tsu [1] and Zhang et al 
[2]. This motivation may be attributed to the potential and extensive applications of the 
resonant tunneling phenomenon in high speed electronic devices that encompasses lasers, 
modulators, photodetectors and signal processing devices [1]. The interest in this field has 
been catapulted to a new height with the advent of epitaxial growth techniques, and 
particularly, the technique of molecular-beam epitaxy (MBE) and metalorganic chemical 
vapour deposition (MOCVD), through which fabrication of perfect superlattices and 
multi-quantum-well structures became a reality. Besides, the study of tunneling through 
multibarrier structure (MBS) provides a deeper understanding of the transport phenomena 
through semiconductor superlattices and similar structures, such as quantum-dot arrays.  
Hence, a theoretical model for accurate determination of resonant energies in such 
multibarrier structures [3-5] might help the experimentalists to fabricate ultrahigh-speed 
electronic and optoelectronic devices. Recently, the electronic conductance  in double 
quantum well systems have been reviewed in [6] and  the study of tunneling of a particle 
or a photonic wave packet through an arbitrary number of finite rectangular opaque 
barriers has also been  reported [5].  Analysis on tunneling across an arbitrary shape of 
potential barrier and the calculation of tunneling coefficients based on the analytic 
transfer-matrix technique is provided in a general framework by Zhang et al [7].  A 
deeper insight of the transport phenomena through semiconductor superlattices, resulting 
from the study of tunneling through multibarrier system, is given in [8].   

Crystalline semiconductor superlattices are usually constructed by growing two 
compounds, such as GaAs/Al y Ga y−1 As, where the lattice constants are almost identical.  

It has been reported by Esaki [9] that the model on super lattices is analogous to the 
Kronig-Penny model with the following conditions; (i) the barrier height is the energy 
mismatch in the conduction band edges of two materials with different compositions, (ii) 
The masses in the well and barrier regions are different and they correspond to the 
effective masses at the conduction band edges respectively.   

The electrons in condensed matter consisting of heavy atoms acquire velocities in 
the order of 106m/sec or more. For such velocities, one needs to incorporate relativistic 
effects. In fact, relativistic effects become important for metals with atomic numbers 
greater than about 55 and for semiconductors and semimetals with atomic numbers 
greater than 32. So the tunneling through MBS involving semiconducting materials of 
heavy atoms requires to be studied relativistically. All the works reviewed so far pertains 
to calculations in the nonrelativistic framework. The very few works reported on the 
study of resonant tunneling in MBS using relativistic treatment [10] is limited to the 
study of resonant energies in the range 0V〈ε , V0 being the height of the Potential barrier. 
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A study of resonant tunneling with incident energies 0V≥ε   is expected to bring the 

features of the resonant tunneling energy bands more clearly. Further the resonant 
tunneling energies depend on the parameters such as the height of the potential barrier 
controlled through the mole fraction of barrier material vis-a-vis the well material, the 
thickness of the barrier and well layers and the number of barriers in the structure. We 
have not come across any such attempt to study theoretically relations of resonant 
energies on these factors.  

The present paper aims to study (i) the tunneling in the multi-barrier systems in a 
comprehensive manner using relativistic treatments for incident energies for both 

0V〈ε and 0V≥ε  (ii) finding an analytical relation between the wave vectors and the 

resonant energy states in the tunneling energy bands, (iii) examine the dependence of 
resonant tunneling energies in the MBS on various factors like the height of the potential 
barrier, the thickness of the barrier, and well layers and the number of barriers in the 
structure.  

We consider a MBS constructed by growing two different semi conducting materials 
in alternate layers, for example, GaAs and AlyGa1-yAs, as shown in Fig. 1(a). The 
materials in the alternate layers have similar band structure but different energy gaps 
leading to a potential distribution in the growth direction. The MBS potential is assumed 
to take the form of alternate rectangular barriers and wells at the conduction and valence 
band edges along the growth direction and is considered to be superimposed on the 
intrinsic periodic potential of the host crystal. The effect of periodic crystal potential of 
the host material is incorporated through the inclusion of band effective mass of the 
material.  Schematic energy diagram for these stacking layers are shown in Fig. 1(b). 
The low gap material, GaAs, forms the well while the large gap material AlyGa1-yAs 
forms the barrier of the superlattice. The barrier height at the conduction band edge is 
assumed [11] to be 88% of the difference between the band gaps of two materials. The 
MBS with well and barrier regions, originated from the band offset at the conduction 
band edge is shown in Fig.1(c). 

 The relativistic treatment of the problem is carried out in the single electron 
approximation with the use of space dependent effective mass. The transmission 
coefficient across the MBS is obtained through the transfer matrix.  The relativistic 
treatment requires the two-component spinor solutions to the one-dimensional Dirac 
equation for a constant potential in the effective mass approximation. The transmission 
coefficient of electrons through the MBS is determined as a function of the incident 
electron energy. The resonant energies were obtained in both these treatments by 
numerical computation and also the relation of the resonant tunneling energies in the 
tunneling band is obtained analytically.  
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2. Relativistic treatment of tunneling through symmetric multibarrier 
semiconductor heterostructure 

The tunneling of electrons through multibarrier semiconducting heterostructures can 
be better understood by a model, as shown in Fig. 1(a). In this model, the multibarrier 
structure is obtained by a finite number of binary superlattices. A binary superlattice is 
obtained by alternately stacking layers of semiconducting materials, namely, GaAs and 
Al y Ga y−1 As. These two materials have similar band structures but different energy gaps. 

The schematic energy diagram for the stacking layers is shown in Fig. 1(b). The small 
gap material GaAs forms the well while the large gap material AlyGa1-yAs forms the 
barrier of the superlattice. The barrier height is assumed [11] to be 88% of the difference 
between the band gaps of two materials. The superlattice with well and barrier regions, 
originated from the band offset is shown in Fig.1(c).  The model consists of N barriers of 
thickness ‘b’, and N-1 wells of thickness ‘a’. Thus, the superlattice has a period ‘c’, 
where c= (a+b). The height of the potential barrier is considered as V0 . 
To derive an expression for the tunneling coefficient for the multibarrier system in the 
relativistic framework, we need to consider the one-dimensional Dirac equation for an 
electron in the potential shown in Fig. 1(c). 

( ) ( )2[ ( )]x z
di c m c V x x E x
dx

σ σ φ φ∗− + + =h     (1) 

     where σx and σz are the usual 2X2 Pauli spin matrices, and ( )xφ  is the two component 

wave function. The wave function in the nth well region (V0  = 0) can be obtained as: 
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In the relativistic treatment the continuity condition across the interfaces of the nth 
barrier with nth and (n+1)th well region based on conservation of the probability density 
and the current density appear as :  
 

 

The transfer matrix, M1, for a single barrier relates the coefficient matrix 3
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Thus the transfer matrix Wn which relates the coefficient matrix of the incoming and 
outgoing wave in the N barrier system appears as 
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 On substitution of from eq (7), the transfer matrix takes the form 

  ( )* N N
NW F G= , 

where the matrix  1G F M=  
The matrix WN  is hermitian and its determinant has unit value. Now the G matrix can be 
diagonalized to the matrix Gd as  
                                             1
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 The sum of the eigenvalues of G is equal to the trace of the matrix defined as GTr, which 

appears as  
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The above conditions can be summed up as: 

 

 

  

                        (10) 

 

 

Using these relations the transfer matrix WN can be written as   
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N dW F S G S −=  . 

The transmission coefficient TN across N barriers can be obtained as 
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In the extreme right [(N=1)th] well, as there is no reflected component, one can set B2N+1  

= 0. Using this fact the transmission coefficient, TN , across the N-barrier system  can be 

obtained as: 
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where (WN)12 appears as 
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The transmission coefficient TN across the N barrier system for the three different 
situations corresponding to the incident energy ε < V0 , ε = V0  and ε > V0  can  thus be 
obtained by substituting the relation for the matrix element (M1)12  for these cases from 
eq (6).  
 

3.  Numerical Analysis  

The numerical analysis is basically concerned with (i) the transmission coefficient 
across multibarrier systems for incident energies   ε < V0 , ε = V0  and ε > V0  ,(ii) 
determination of resonant tunneling energies for which the transmission coefficient is 
unity The procedure for computing the transmission coefficient in the relativistic 
treatment is based on numerical computation of  Eq. (11) incombination with Eqs. (12), 
(6) and (10). Thereafter these datas were sorted to obtain the resonant tunneling energies 
in the multibarrier systems by using a search program to find the energies for which 
transmission coefficient is unity. For the numerical evaluation of Tc and εm, we have 
chosen the GaAs/AlyGa1-yAs (y< 0.45) superlattice with the values of various parameters  
as follows:    
            a  = the well width = ncw x aw, where ncw is the number of cells in the well 
material in each well slab and aw  is the lattice constant of the well material GaAs. 
            aw = 5.6533 Ǻ 
            b= the barrier width = ncb x ab, where ncb is the number of unit cells of the 
barrier material in each barrier slab and  ab  is   the lattice constant of the barrier material 
Al0.3Ga.0.7As .  

*
1m and *

2m  = the effective masses of the well (GaAs) and the barrier 
Al0.3Ga.0.7As region materials of the superlattice 

 = 0.065 m0 and (0.067 + 0.83x 0.3) m0 ; m0 is the free electron mass. 
Eg1 and Eg2  =  energy band gap in the well and barrier materials 

= 1.428 eV and (1.424 + 1.247x 0.3) eV. 
     V = height of the potential barrier = 0.88 (Eg2 − Eg1)  



 Resonant Tunneling in Multibarrier Semiconductor……… 107 

The energy band gap of AlyGa1−yAs becomes indirect when the value of mole fraction 
(y) exceeds 0.45, and hence does not conform to the band diagram (shown in Fig. 1(b)). 
Therefore, for the present calculations we have considered y=0.3. 
 

4. Results and Discussion 
The transmission coefficient for GaAS/ Al0.3Ga.0.7As  multi barrier systems in a 

relativistic framework is calculated on the basis of Eq.(11) in combination with 
Eqs.(12)and (6). Fig (2) depicts the transmission coefficient versus incident energy. The 
graphs 2(a) and 2(b) show the variation of Tc~ε   for systems with ncw=5, ncb=5 having 
3 barriers and 9 barriers respectively. The Tc~ε   curve for 9 barrier systems with ncw=5, 
ncb=8 is presented in graphs in 2(c) and that for ncw=8 and ncb=5 in graph 2(d). The 
graphs clearly show that the transmission coefficient varies rapidly and attains the value 
of unity for certain incident energies. These energies are referred as resonant energies 
both for 0V<ε and 0V>ε .  

The resonant energy corresponds to the condition Tc =1 and are obtained from the 
ε  ~ Tc graphs by a search program. Fig. 3 displays the resonant energies for systems with 
varied ncw, ncb and N. The resonant energies groups themselves into allowed tunneling 
bands separated by forbidden gaps. In the forbidden region the transmission coefficient 
remains zero.  In each allowed tunneling band there are N-1 resonant states; N being the 
number of barriers in the system. In the first band the variation of Tc seems to be rapid 
and becomes zero in the neighborhood of the maxima. However, the variation of Tc is not 
that rapid for resonant energies in the higher bands. The Tc in the higher bands remains 
near the maximum value of unity and the peaks are less sharp.  

However in each system, there is one extra energy state observed , where Tc become 
one. We feel this might be a surface state.  

(a) We would like to highlight some of the important aspects of resonant energies 
obtained on the basis of Eqs. (12) during the resonance tunneling, the electron energy 
resonates at the bound states of quantum well. Hence, the numbers of allowed minibands 
in these multi barrier systems are found to be equal to the number of bound energy states 
in the single finite quantum well having the same parameters as that of the MBS.  It may 
be worth noting here that the number of bound states, j, for ε<V0  in a finite well depends 
on the width, a, and  potential height, V0, of the quantum well through the relation : 
  1)( += βIntj     

where,  ( ) 2

*
1

2
2
2

2
1

2 8
h

Vmakka
VE =+







π

=β =  and   

 Int. (β) =Integer value of β. 
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Hence due to phase coherence the number of tunneling bands in multibarrier systems for 
ε<V0 will be equal to ‘j’ which depends on the well width and the height of the potential 
barrier and is independent of the barrier width 

(b) The Eq (11) in combination with Eq (12)  is akin to  the energy relation for a 
lattice of period (a+b) calculated using effective mass dependent Kronig-Penney model. 
The allowed energy bands are restricted to values of  GTr <2 which corresponds to the 
allowed values of cosθ  in Eq.(12).  

As can be seen from Eq. (11) in combination with Eq. (12), the resonant state will 
correspond to 0sin =θN where θ  is given in Eq. (10). Thus, there  occurs N-1 values of 
resonant energies in each band for / ,n Nθ π=  1, 2,..., 1.n N= − Thus for the N-barrier  

superlattice with (N −1) wells, each allowed mini energy band will contain (N−1) number 
of resonance energy states corresponding to the (N −1) values of θ .  

Fig. 3(a) presents the resonant energy states for ncw=5 and ncb=5 but for the number 
of barriers N to be 5, 7, 9. We have considered incident energies up to 1.4eV. In all these 
three centre we have obtained three allowed tunneling bands with each allowed band 
containing N-1 resonant states. For low values of N, Em lies in the center of the band, as 
N increases Em spreads out from the central regions of the bands towards the edges. In 
Fig. 3(b) depicts the resonant energy state for 9 barrier system with constant barrier width 
with ncb=5 and varying well width with ncw=1, 5, 8 respectively. The number of allowed  
tunneling bands  increases from 2 to 4 when we move from ncw=2 to ncw=8. Further, 
with increase in ncw, the width of the allowed bands and the forbidden gaps become 
narrower. The energies of the bound state of the quantum wells move to lower energy 
values as the width of the well increases.   It is worth pointing that in an infinite quantum 
well the energies of the bound states are inversely proportional to the square of the well 
width and   any increase in well width will cause the bound states to shift to the lower 
values.  Here, the surface state have the same values for all the three cases of well width 
suggesting that the energy of the surface state is independent of the well width.  Fig. 3(c) 
represents the resonant tunneling energies for the 9 baririer systems for constant well 
width with ncw=5 and varying barrier width ncb=2, 5, 8. An increase in barrier width 
causes a decrease in the overlap interactions between the states of adjacent wells resulting 
in a decrease in the bandwidth which is evident in the graph Fig. 3(c) as we go from 
ncb=2 to ncb=8. In Fig. 3(d), resonant energies are presented for a system for 9 barrier 
system having constant lattice periodicity but varying well width and barrier width. As 
the barrier width decreases, the surface state moves to lower values of energy.  In Fig. 
3(d) the inset graph represent the tunneling bands for the ncw=5, ncb=5 and N=9 system 
in an extended zone scheme. In all these graphs the surface state is shown as arrow mark.  
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4. Conclusions 
In this work, a model for computation of transmission coefficient for multibarrier 

semiconductor heterostructure in the relativistic framework is proposed. The resonant 
energy values are found to be dependent on the number of barriers, number of cells in the 
well region and number of cells in the barrier region. The results indicate the presence of 
a new surface state in the resonant energy spectrum.  For the system we have considered, 
the resonant energies calculated through the relativistic treatment tallies exactly with the 
corresponding values calculated through nonrelativistic framework as for as lower bands 
are concerned [12]. In the higher tunneling bands the resonant tunneling energies in the 
relativistic treatment is found to have slightly higher values than those in the 
nonrelativistic treatment with the relativistic correction appearing only in the fifth place 
of the energy values. The computation of resonant tunneling energies by this research 
work may help the experimentalist to fabricate the high-speed semiconductor devices for 
potential applications.  
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Figure 1 
(a) Schematic diagram of a binary superlattice obtained by alternately stacking 

layers of semiconducting materials ( GaAs and Al0.3Ga0.7As). (b) Energy Band diagram of 
stacking layers. (c) The multibarrier heterostructure with well and barrier regions 
originating from the band offset.  
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Figure 2(a)                                                             Figure 2(b) 

 
  

 
 

 
 

 
 

 
 
 
 

 
 

 
 

Figure 2(c)                                                         Figure 2(d) 
 

Figure 2 : Transmission coefficient versus electron energy for GaAs/Al0.3Ga0.7As 
superlattice by varying  number of barriers ‘N’, number of cells in the well region ‘ncw’, 
number of cells in the barrier region ‘ncb’. The arrow indicates the position of the surface 
state. The star symbol indicates the position E=V0 and shown in the figure to compare the 
Tc for E < V0 and E > V0  . (a) N=3, ncw=5, ncb=5, (b) N=9, ncw=5, ncb=5, (c) 
N=9,ncw=5, ncb=4, (d) N=9, ncw=8, ncb=5. 
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             Figure 3(a)                                                           Figure 3(b) 
 
 
 

 

 
 

 
 

 
 

 
 
                           

Figure 3(c)                                                        Figure 3(d) 
 
 

Figure 3 : Resonant energy (Em) values for GaAs/Al0.3Ga0.7As superlattice. The arrow 
indicates the position of the surface state. (a) the number of barriers ‘N’ is varied from 5 
to 9, and the number cells in the well region ncw=5,  the number cells in the barrier 
ncb=5. (b) N=9, ncw=2,5,8 , and ncb is fixed at 5. (c) N=9, ncw is fixed at 5, and 
ncb=4,5,6. (d) N=9, both ncw and ncb are varied simultaneously keeping the total no of 
cells constant. 
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