
201

Journal of Physical Sciences, Vol. 10, 2006, 201 – 217

A Sequential Algorithm to Solve Next-to-Shortest Path Problem
on Circular-arc Graphs

Swagata Mandal and Madhumangal Pal*
Department of Applied Mathematics with Oceanology and Computer

Programming, Vidyasagar University, Midnapore-721 102, India

Received 20 October, 2006 ; accepted 15 November, 2006

ABSTRACT
In this article, we study the problem of finding the next-to-shortest path in
circular-arc graph. A next-to-shortest path between any pair of vertices in a
shortest path amongst all paths between those vertices with length strictly greater
than the length of the shortest path. The next-to-shortest path problem in a
directed graph in NP-hard. Here we deigned a polynomial time algorithm to
solve this problem for the circular-arc graph.

Keywords : Design and analysis of algorithms, Shortest paths, Next shortest paths,
Circular-arc graph.

1. Introduction

1.1 Problem under consideration
A graph G = (V, E) is called an intersection graph for a finite family F of a non empty set if
there is a one-to-one correspondence between F and V such that two sets in F have non
empty intersection if and only if their corresponding vertices in V are adjacent to each other.
F is called an intersection model of G and G is called the intersection graph of F. If F is a
family of arcs around a circle, then G is called an interval graph. V is the set of all vertices
and E is the set of all edges of the graph G.

Circular-arc graph is a general form of interval graph [4, 11] and it is one of the most
useful discrete mathematical structure for modelling problems arising in the real world. It
has many applications in genetics, traffic control, cyclic scheduling and computer compiler
design.

Turker [15] has proposed O(n3) time algorithm for recognizing a circular-arc graph
and constructing in the affirmative case, a circular arc model. Hsu [5] has designed an

202 Swagata Mandal et al.

O(nm) time algorithm for this problem. Eschen and Spinrad [3] have presented an O(n2)
time algorithm for recognizing a circular-arc graph.

A walk is an ordered list of vertices and edges v0, e1, v1, e2, v2, ek, vk such that for
1�i�k, the endpoints of ei and vi–1 and vi. Depending on the context we may just specify a
walk by giving either an ordered list of vertices or of edges. A path is a walk for which the
vertices v0, e1, v1, e2, v2,..., ek, vk are distinct. The length of a path is the number of edges
in the path. A path from the vertex i to the vertex j is a shortest path if there is no other
path from i to j with lower length. The shortest distance (i.e., the length of the shortest path)
between the vertices i and j is denoted by d(i,j). The next-to-shortest path from the vertex
i to the vertex j is the shortest distance from the verted i to the verted j amongst those the
distances strictly greater than the shortest distance d(i, j). If no such path exist, we say that
the distance of next-to shortest path is ∞. The next-to-shortest distance (i.e., the length of
the next-to-shortest path) between the vertices i and j is denoted by nd(i, j).

1.2. Survey of the previous work
Finding the k-shortest paths between two vertices has also been well-studied, in for instance
[2, 6]. Problems involving finding a path between two vertices of length strictly greater than
the length of the shortest such path have received much less attention due to the fact that in
directed graphs, when we allow edges of length zero, the problem has been show to be NP-
hard [8]. Krasikow and Noble [7] have solved the problem to find next-to-shortest path in a
weighted graph in O(n3m) time, where m is the number of edges and n is the number of
vertices. In [14], Seidel has given an O(M(n)log n) time sequential algorithm for all pair
shortest path (APSP) problem for an undirected un-weighted arbitrary graphs with n vertices,
M(n) being the time necessary to multiply two n × n matrices of small integers, the best
known time for M(n) is of O(n2.376). Atallah et al. [1] solved the single source shortest path
problem on the weighted interval and circular-arc graphs in O(n) time, if the intervals /
circular arcs are given sorted and hence also solved the weighted all-pair shortest path
problem in the optimal O(n2) time and O(n2) space. Pal and Bhattacharjee [12] have designed
a parallel algorithm to solve APSP problem on interval graphs using O(n2/p + log n) time
and p processors on an EPEW PRAM. Mondal et al. have soloved APSP problem on
permutation graph [10] and on trapezoid graphs [9] in O(n2) time. Saha et al. [13] have
proposed O(n2) time algorithm for solving all-pairs shortest paths problem on circular-arc
graphs.

1.3. Our result
In this paper, we designed an algorithm to find a next-to-shortest path between two vertices
of a circular-arc graph. The proposed algorithm runs in O(n2) time.

2 Preliminaries
Let A = {A1, A2, ..., An} be the circular arc family of a circular-arc graph G = (V, E). The

A Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs 203

family of circular arcs are located around a circle C. While going in a clockwise direction,
the point at which we first encounter an arc will be called the starting point of the arc.
Similarly, the point at which we leave an arc will be called the starting point of all arc.
Similarly, the point at which we leave an arc will be called the finishing point of the arc.
Every arc can be represented by their two endpoints e.g., Ai can be represented as [si, fi],
wherre si is the starting point and fi is the finishing point of the arc Ai on the circle C. Each
endpoint of an arc is assigned to a positive integer called a coordinate. A ray is a straight
line from the centre of C passing through any coordinate.

We consider a ray through straiting point of any arc. We label this arc by 1, then we
start clockwise traversal from the ray. We label 2 to the next successive starting point. In
this process, we label all the remaining arcs.

Without loss of generality, we assume the following :
1. An arc contains both its end points and that no two arcs share a common end point.
2. The graph G is connected and the list of sorted endpoints are given.
3. No single arc in A cover the entire circle C.
4. Arcs and vertices of a circular-arc graph are same thing.
5. The endpoints of the arcs in A are sorted according to the order in which they are

visited during the anticlockwise traversal along circle by starting at an arbitrary arc
called An.

6. The arcs are sorted in decreasing values of fi’s i.e., fi < fi for i < j.

7. 1
n
i iU A C= = (otherwise, the problem becomes one on interval graph).

Figure 1 : Example of a circular-arc graph and its circular arc representation

The family of arcs A is said to be canonical if
(i) si’s and fi’s for all i = 1, 2, ..., n are distinct integers between 1 and 2n, and
(ii) the endpont 2n is the finishing end point of the arc An.

204 Swagata Mandal et al.

If A is not canonical, using sorting one can construct a canonical family of arcs in
O(n log n) time.

To find the next-to-shortest path of a circular-arc graph a main cycle is constructed
from the set of arcs. The method to find such cycle is described in the next section.

3. Method to Find a Main Cycle
3.1. Definition of main cycle
A cycle of a circular-arc graph is the set of intersecting arcs those cover the whole circle C.

That is, if A1, A2..., Ar be a set of arcs of a cycle then 1 1,i i rA A A A+ ≠ φ ≠ φ∩ ∩ and

1
r
i iU A C= = . The main cycle is a cycle whose cardinality is minimum among all cycles. The

main cycle is denoted by M´. Let M be the set of vertices corresponding to the arcs of M´.
The set M is also regarded as the main cycle. The length of a cycle C is the number of arcs
on the cycle C and it is denoted by len(C). The length of the main cycle is the minimum
among all other cycles. A circular-arc graph may have more that one main cycles, but their
lengths are same. If a graph has multiple cycles then any one of them is taken as main
cycle.

A method to find a main cycle is describe below :
First we draw a ray through the finishing point of any arc of A. Then, we consider the

arcs which are intersected by this ray. Then we determine the arc which has right most
finishing point. Thus is, the first verted of the set M. Again, we draw a ray from the centre
and through the finishing point of the first vertex of M. Consider the arcs which are intersected
by the second ray. Then we find the arc which has right most finishing point among the arcs
which are intersected by second ray. Let the vertex corresponding to this arc be the second
vertex of M. This process terminates when any vertex of M is repeated. Finally, the duplicate
vertices are to be removed from M.

3.2. Algorithm and complexity to find the main cycle
Here, we present an algorithm which generates a main cycle, even the graph contains more
than one main cycles.

ALGORITHM MC
Input : A set of arcs A of a circular-arc graph G.
Output : A set of vertices M which form a main cycle.
Step 1 : Set M = φ. Choose any arc Ai from A.
Step 2 : Draw a ray through the finishing point of the arc Ai.
Step 3 : Consider the arcs which are intersected by the ray drawn in Step 2,

and let these set of arcs be B.
Step 4 : Find the arc which has right most finishing point of the arcs of B.

Let this arc be Ai.

A Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs 205

Step 5 : Set M = M ∪ {i}.
Step 6 : Repeat Step 2 to Step 5 until any vertex of M is repeated.
Step 7 : Delete the repeated vertices from M.

END MC.
In this algorighm, the endpoints of each arc are consider to select the members

of M. The total number of arcs of a circular-arc graph is taken as n. The time complexity of
Algorithm MC is stated below.

Theorem 1. A main cycle M of a circular-arc graph with n vertices can be computed
in O(n) time.

Throughout the paper, we mark the vertices of main cycle M by using the symbol of

asterisk i.e., * * * * *
1 2, ,..., , ,lv v v u v etc. are the vertices of M. Let D be the set of the vertices

which are not in M i.e., D = V\M. The unmarked (by asterisk) vertices are taken as the
vertices of D.

Lemma 1. The Algorithm MC correctly computes the main cycle.
Proof : Any vertex of M is adjacent with its next and previous vertices. The process of

finding the vertices of M is terminate when any vertex of M is repeated. Let *
iv be repeated.

The vertex *
iv and the next vertex of *

iv for the first time are adjacent. Similarly, for second

time *
iv and the previous vertex of *

iv are adjacent. So, if we delete the vertices from first

vertex to the verted *
iv (first occurance) from M, then any two consecutive vertices of the

remaining vertices of M are adjacent. Also, any vertex is repeated in clockwise traversal, so
the vertices of the remaining vertices of M are adjacent. Also, any vertex is repeated in
clockwise traversal, so the vertices of M covers the whole circle i.e., vertices of M form a
cycle.

If the length of the cycle is minimum the cycle becomes main cycle. If the removal of
any vertex from M makes another cycle by the remaining vertices, then the cycle constructed
by the Algorithm MC do not cover the circle C. Let * * *

1 2, ,i i iv v v+ + be three consecutive

vertices. So, *
iv and *

1iv + are adjacent, also *
1iv + and *

2iv + are adjacent. If * *
2,i iv v + are

adjacent then *
2iv + must cover the finishing point of *

iv . If *
1iv + is the next vertex of *

iv , then

finishing point of *
2iv + is less than finishing point of *

1iv + . But it is impossible, because *
2iv + is

next vertex of *
1iv + . So, many two non-consecutive vertices are not adjacent. Therefore, if

we delete any vertex from M then vertices of M cannot form a cycle.

3.3. Properties of main cycle
A circular-arc graph may contain more than one main cycle. But, the length of all main
cycles are equal whatever may be the starting arc. The Algorithm MC generates only one
main cycle.

206 Swagata Mandal et al.

Lemma 2. If u D∈ then u is adjacent to at least one vertex of M.

Proof : By the definition of main cycle, the vertices of M form a cycle and cover the whole
circle C. Since the graph is a circular-are graph, any are corresponding to the vertex u ∈ D
must lie over the circle (see Figure 2). But, the vertices of M cover the whole circle. So, the
arc corresponding to the vertex u must has non empty intersection with at least one arc
corresponding to a vertex of M. Therefore, u is adjacent to at least one vertex of M.

Figure 2 : Illustration of Lemma 2

Lemma 3. Any vertex of D cannot be adjacent with more than three vertices of main
cycle.
Proof : Let Ak be the arc corresponding to the vertex νk ∈ D. If possible, let the arc Ak

intersect with four arcs * * * *
1 2 3, , ,+ + +i i i iA A A A (see Figure 3). Then the arc Ak covers, at least,

the finishing point of the arc *
iA and starting point of *

3+iA is less than the finishing point of
Ak i.e., *

3+ <i ks f . By definition, it is easy to see that * *
1 3,+ +i iA A are non intersecting arcs. So,

finishing point of *
1+iA is less than starting point of *

3+iA i.e., * *
1 3+ +<i if s . Therefore *

1+ <i kf f .

Both the arcs *
1,+i kA A cover the finishing point of *

iA and finishing point of *
1+iA is less than

finishing point Ak. Thus the arc Ak cannot interesect with four arcs * * * *
1 2 3, , ,+ + +i i i iA A A A .

Figure 3 : Illustration of Lemma 3

A Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs 207

Lemma 4. If the vertex u ∈ D is adjacent to the non-consecutive vertices *
2+νi , then u

is also adjacent to *
1+iA , where * * *

1 2, ,+ +ν ν νi i i are three consecutive vertices of M.

Proof : If u ∈ D is adjacent to the vertices *νi and *
2+νi , then arcs Au and *

iA have
non-empty intersection and arcs Au,

*
2+iA have non-empty intersection. Let the starting

point of Au be greater than the starting point of *
2+iA [see Figure 4 (a)]. Also, the vertices

* * *
1 2, ,+ +ν ν νi i i of M, then the starting point of the arc *

1+iA is less than finishing point of *
iA

and the finishing point of the arc *
1+iA is greater than the starting point of the arc *

2+iA . So,

the arcs Au and *
1+iA must have non-empty intersection. The vertices u and *

1+νi are adjacent.

Figure 4 : (a) The possible case, and (b) the possible case of Lemma 4

Otherwise, is the starting point of arc Au is less than finishing point of *
2+iA and the

finishing point of Au is greater than the starting point of *
iA [see Figure 4 (b)], then also the

vertices u, *νi are adjacent and u, *
2+νi are adjacent. There does not exist non-empty

intersection of arcs Au and *
1+iA . But in this case, the vertex u becomes as a member of the

main cycle. But we consider the vertex u and a mamber of the set D. Therefore, if u is a

vertex of D and adjacent to the non-consectutive vertices *νi and *
2+νi then u also adjacent

to the vertex *
1+νi .

Lemma 5. The length of a cycle other than main cycle is less than 4.
Proof : If possible let *νi → u → *

2+νi → *
1+νi → *νi be a cycle of length 4, where u ∈ D

and * * *
1 2, ,+ +ν ν ν ∈i i i M . But by the Lemma 4, we know if u is adjacent to *νi and *

2+νi then

u is also adjacent to *
2+νi . The the cycle * * * *

2 1+ +ν → → ν → ν → νi i i iu can be decomposed
into two cycles * * *

1+ν → →ν → νi i iu and * * *
1 2 1+ + +ν → → ν → νi i iu each of length 3.

Again, we let * * *
1+ν → → ν → ν → νi i iu be a cycle of length 4, where u, ν ∈ D and

* *
1, +ν ν ∈i i M . If the vertices u, ν are Av be less than the finishing point of the arc Av i.e., sv

< fu. Then the portion [sv , fu] must lies at least one of the arcs Ai and *
1+iA or both the arcs

208 Swagata Mandal et al.

Ai and *
1+iA . If the portion [sv , fu] must lies at least one of the arcs Ai and *

1+iA or both the

arcs Ai and *
1+iA . If the portion [sv , fu] lies on the arc *

iA then the vertices vertices *νi and

v are adjacent. If the portion [sv , fu] lies on the arc *
1+iA then the vertices *

1+νi and u are
adjacent. Also if the portion [sv , fu] lies on both the arcs *

iA and *
1+iA then vertices *

1+νi and

u are adjacent and the vertices *νi and v are adjacent. Therefore, if u and *
1+νi are adjacent

then cycle * * *
1+ν → → ν → ν → νi i iu is decomposed into two cycles * * *

1+ν → →ν → νi i iu
and * *

1 1+ +ν → ν → → νi iu each of length 3. Also. if v is adjacent to *νi then the cycle
* * *

1+ν → → ν → ν → νi i iu is the combination of cycles * * *
1+ν → ν → ν → νi i i and

* *ν → → ν → νi iu each of length 3.

Figure 5 : (a) The possible cases of Lemma 5

Otherwise, if arcs Au and Av are connected in other endpoints i.e., starting point of Au

is less than finishing point of Au [see Figure 5 (b)]. Then vertices u and v are adjacent but u

may not be adjacent to *
1+νi and v may not be adjacent to *νi . But, in this case vertices u and

v becomes the member of main cycle.
Again, if there emist an arc *

jA whose starting point is less than the finishing point of
*

1+iA and the finishing point is greater than the starting point of *
iA [see Figure 5(c)] then

* * * *
1(,) , (,)+ν ν ∈ ν ν ∈i j i jE E . Then u, v does not become the vertices of the main cycle. But,

in this case, *ν j is the vertex of the main cycle and number of vertices of the main cycle is

3. So, the cycle * * *
1+ν → → ν → ν → νi i iu is nothing but the combination of two cycles

* * *ν → ν → ν → νi j i and * * *
1 1+ +ν →ν → ν → νi j i each of length 3.

Therefore, the length of any cycle other than main cycle is always less than 4.

4. Next-to-Shortest Path
Computation of next-to-shortest path is mainly depends on all-pairs shortest paths on

A Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs 209

circular arc graph. The all pairs shortest paths and their distances can be determined by
using the algorithm of Saha et al. [13]. We assume that, all pairs shortest paths and distances
are available. In the following, some results are presented which will help us to disign next-
to-shortest path. In our proposed algorithm, the next-to-shortest path is determine in two
stages. In first stage, we determine the next-to-shortest path between two vertices which
belong to the main cycle M. In the next stage, we find the same for the vertices of D.

Throughout the paper, we denote a path between the vertices u and v of length more

than one by the symbol *→u v.

If there is no alternating path between any two vertices u and v of length strictly
greater than d (u, v) then we assumed that nd (u, v) = ∞.

The lemmas 6 and 7 give the value of next-t0-shortest distance between the vertices
of M.

Lemman 6. Let x be a vertex of D. If * *
1(,)+ ∈i iv v E and *

1(,)+ ∈iv x E then * *
1(,) 2+ =i ind v v .

Proof : Since *
iv and *

1+iv is * *
1(,)+ ∈i iv v E . Thus the shortest path from *

iv to *
1+iv is * *

1+→i iv v
and hence * *

1(,) 1+ =i id v v . If *(,)∈iv x E and *
1(,)+ ∈iv x E for any vertex

x ∈ D then there exist a path * *
1+→ →i iv x v from *

iv to *
1+iv . The length of this path is 2.

This is greater than the shortest distance by 1. Hence the next-to-shortest distance from *
iv

to *
1+iv is 2 i.e., and * *

1(,) 2+ =i ind v v .
For the graph of the Figure 6, nd(6,4) = 2.

Lemma 7. If * *
1(,)+ ∈i iv v E and there does not exist any vertex x ∈ D such that *(,)∈iv x E

and *
1(,)+ ∈iv x E then * *

1(,) 1+ = −i ind v v M .

Proof : If * *
1, +i iv v are two adjacent vertices in M, so the shortest path between *

1+iv to *
1+iv

is * *
1+→i iv v . So, * *

1(,) 1+ =i id v v . Since *
iv , *

1+iv are the vertices of M then there exist another

path between *
iv to *

1+iv which is ** * * * *
1 2 2 1− − + +→ → → →i i i i iv v v v v . The length of this path

is (M – 1). Let there exist a vertex y ∈ D such that y is adjacent to another vertices *
1−iv

and *
2−iv in M i.e, *

1 1(,)− ∈y v E . Then there exist also a path between *
iv to *

1+iv which is
* * * * *

1 2 2 1− − + +→ → → → →i i i i iv v y v v v . But the length of this path is M – 1. This is greater

than (M –1). By Lemma 5 there does not exist the path * *
1+→ → →i iv x y v for any two

vertices x, y ∈ D. Therefore, the next shortest distance between *
iv and *

1+iv is M –1.

For the graph of the Figure 6, (6,7) 1 6 1 5.= − = − =nd M

The next-to-shortest distance between two adjacent vertices vertices of D is obtain by
the following lemmas.

210 Swagata Mandal et al.

Figure 6 : Illustration of Lemmas 6, 8, 9

Lemma 8. If (u,v) ∈ E where u, v ∈ D then nd (u,v) = 2.
Proof : If u and v are adjacent then shortest path between them is u → v and the shortest

distance is 1. Let the starting point of the arc Av corresponding to the vertex v is less than the

finishing point arc Au corresponding to the vertex u. Then the arc [sv, fu] is over the arc *
iA

then u and v are both adjacent to the vertex *
iv . So there exist the path u → *

iv → v and the

length of this path is 2. Therefore nd(u,v) = 2.
In the graph of the Figure 6, nd (9,10) = 2.
The next-to-shortest distance between two vertices does always not exist. This is

proved in the following lemma.

Lemma 9. If (u, *
iv) ∈ E where u ∈ D, *

iv ∈ M and there does not exist any vertex x ∈
V such that (*

iv ,x) ∈ E and (u,x) ∈ E then nd (u,v) = ∞.
Proof : If there does mpt exist any vertex x ∈ V such that (*

iv ,x) ∈ E and

(u,x) ∈ E the by Lemma 7 there does not exist any path from *
iv to u of length 2. Also, by

Lemma 5 there does not exist any path u → x → *
1+iv → *

iv or
u → x → *

1−iv → *
iv for any vertex x ∈ D. Also u ∉ M, then nd (u, *

iv) is not equal to M –

1. So there exist only one path between *
iv and u. So, the next-to-shortest path does not

exist between *
iv and u i.e., nd (*

iv ,u) = ∞.
In the graph of the Figure 6, nd (2,3) = ∞.

A Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs 211

Figure 7 : Illustration of Lemmas 10, 11, 13, 14, 15

Lemma 10. Let *
iv and *

jv be any two non-adjacent vertices on main cycle M. If theree

exist an edge * *
1(,)+i iu u on shortest path between *

iv to *
jv such that

nd * *
1(,)+i iu u = 2 then nd(*

iv , *
jv) = d(*

iv , *
jv) + 1.

Proof : Let * *
1(,)+i iu u be an edge on the shortest path between *

iv and *
jv where next

shortest distance between *
iu to *

1+iu is 2. Let the next shortest path between *
iu to *

1+iu be
*
iu → v → *

1+iu for any vertex v ∈ D. If the shortest path between *
iv to *

jv is
* ** * * * *

1 1+ +→ → → →i i i i jv v u u v then there exist the path
* ** * * * *

1 1+ +→ → → → →i i i i jv v u v u v . The length of this path is * *(,) 1+i id v v and this length

is greater than the shortest distance by 1. So this path is next shortest path between *
iv to

*
jv . Therefore, next shortest distance between *

iv and *
jv is * *(,) 1+i jd v v .

In the graph of the Figure 7, (11,4) (11,4) 1 3 1 4= + = + =nd d .

Lemma 11. Let *
iv and *

jv be any two non-adjacent vertices on main cycle M. If theree

does not exist an edge * *
1(,)+i iu u on shortest path between *

iv and *
jv such that

* *
1(,) 2+ =i ind u u then * * * *(,) (,)= −i j i jnd v v M d v v .

Proof : Let the shortest path between *
iv and *

jv be ** * * *
1 1+ −→ → →i i i jv v v v . If there does

not exist an edge * *
1(,)+i iu u on shortest path between *

iv and *
jv such that * *

1(,) 2+ =i ind u u

then there does not exist any path with length * *(,) 1+i jd v v between *
iv and *

jv . If *
iv and *

jv

are the vertices of the set M then there exist another path ** * * * *
1 2 1− + +→ → → →i i j j jv v v v v .

212 Swagata Mandal et al.

The length of this path is * *(,)− i iM d v v , if this is greater than * *(,)i jd v v . So the next shortest

distance is * *(,)− i iM d v v .

In the graph of the Figure 7, (9,7) (9,7) 7 2 5= − = − =nd M d .

Lemma 12. Let iv and jv be any two non-adjacent vertices on D. If there exist an

edge (x,y) on shortest path between iv and jv such that (,) 2=nd x y , then

(,) (,) 1= +i j i jnd v v d v v where x, y ∈ V..

Proof : Let (x,y) is an edge on the shortest path between iv and jv such

that (,) 2=nd x y for x, y ∈ V. Let the next shortest path between x and y

is → →x v y for any vertex v ∈ D. If the shortest path between iv
and jv is * ** *→ → → → →i i j jv v x y v v then there exist the path

* ** *→ → → → →i i j jv v x y v v . The length of this path is (,) 1+i jd v v and this length is

greater than shortest distance by 1. So this path is next shortest distance between iv and

jv . Therefore the next shortest distance between iv and jv is (,) 1+i jd v v .

Lemma 13. Let iv and *
jv be any two non-adjacent vertices where e iv ∈ D and *

jv ∈

M. If there does not exist an edge * *
1(,)+i iu u on the shortest path between iv and *

jv

such that * *
1(,) 2+ =i ind u u , then * * *(,) (,) 1= +i j i jnd v v nd v v where e *(,)∈i iv v E .

Proof : If there does not exist an edge * *
1(,)+i iu u on the shortest path between the vertices

iv and *
jv then there does not exist any path with distance *(,) 1+i jd v v . If iv ∉ M then

there does not exist any path with distance *(,)− i jM d v v . If there does not exist an edge
* *

1(,)+i iu u on the shortest path between the vertices iv and *
jv then there does not exist any

edge * *
1(,)+i iu u on the shortest path between iv and *

jv . So by Lemma 11, the next shortest

path from *
iv to *

jv is ** * * *
1 1− +→ → →i i j jv v v v . Then there exist a path from iv to *

jv

which is ** * * *
1− +→ → → →i i i j i jv v v v v . The length of this path is * *(,) 1+i jnd v v . Therefore

the next shortest distance between iv to *
jv is * *(,) 1+i jnd v v .

Lemma 14. Let vi, vj be two non-adjacent vertices of the set D. If there does not exist

an edge * *
1(,)+i iu u on the shortest path between vi and vj such that * *

1(,) 2+ =i ind u u ,

when * *(,) (,) 2= +i j i jnd v v nd v v where *(,)∈i iv v E and *
1(,)+ ∈j jv v E for any two vertices

* *, ∈i jv v M .

A Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs 213

Proof : Let the shortest path between the vertices v i and v j is
** * * *

1 1+ −→ → → → →i i i j j jv v v v v v where the shortest path between the vertices from *
iv

to *
jv is ** * * *

1 1+ −→ → →i i j jv v v v . So * *(,) (,) 2= +i j i jd v v d v v . If there does not exist any

edge * *
1(,)+i iu u on the shortest path from vi to vj, such that (,) 2=i jnd v v . So the next

shortest distance between the vertices *
iv and *

jv is

Figure 8

** * * * *
1 2 1− + +→ → → →i i j j jv v v v v and the next shortest path from v1 to v j is

** * * * *
1 2 1 .− + +→ → → → → →i i i j j j jv v v v v v v The length of this path is * *(,) 2+i jnd v v .

Therefore the next shortest distance from vi to vj is * *(,) 2+i jnd v v .

In the graph of the Figure 7, (10,5) (9,4) 2 4 2 6= + = + =nd d .

Lemma 15. If v i, vj ∈ D are adjacent with only one vertex, say, * ∈kv M then

(,) = ∞i jnd v v .

Proof : If vi, vj ∈ D are adjacent with only one vertex * ∈kv M , then there exist only one

path from vi to vj which is *→ →i k jv v v . This is shortest path from vi to vj. Therefore the

next shortest distance between the vertices vi to vj is ∞.

5. The Algorithm and its Complexity
In this section, we present an algorithm to find the paths and their distances between

every pair of vertices of a circular-arc graph. The time complexity is also calculated here.
Here three procedures FINDNSP 1, FINDNSP 2 and FINDNSP 3 are formally presented in the

following which computes the next shortest distances of adjacent vertices next shortest
distance of non-adjacent vertices of the set M and the next shortest distances of all other

214 Swagata Mandal et al.

pair of vertices.
Using the results of the lemmas 6 to 9 we design the procedure FINDNSP 1.

Procedure FINDNSP 1
// This procedure computes the next-to-shortest distance between two adjacent vertices

vi, vj ∈ V. //

Let (,) ∈i jv v E .

If (,)∈iv x E and (,)∈jv x E for at least one x ∈ V then (,) 2=i jnd v v (lemmas 6 and 8);

else if (,)∉iv x E for all x ∈ V

if , ∈i jv v M then (,) 1= −i jnd v v M (Lemma 7);

else if ∉iv M or ∉jv M then (,) = ∞i jnd v v ;

endif;
endif;

endif;
end FINDNSP 1

Lemma 16. The time complexity of the procedure FINDNSP 1 is O(n).
Proof : In the procedure FINDNSP 1 we find the next-to-shortest distance between any tow
adjacent vertices. First, we find a vertex of the set D which is adjacent with both the
adjacent vertics. To find the set M or not. This testing can be done using O(n) time. So the
total time complexity of the procedure FINDNSP 1 is O(n).

Based on the results of the lemmas 10 to 11 we have designed the procedure FINDNSP

2. This procedure deterines the next-to-shortest distance between two non-adjacent vertices
of M.

Procedure FINDNSP 2

// This procedure computes the next-to-shortest distance between two vertices *
iv and

*
jv of M. //

Let * *(,)∉i jv v E .

If there exist an edge * *
1(,)+i iu u on the shortest path between *

iv and *
jv such that

* *
1(,) 2+ =i ind u u then * * * *(,) (,)= −i j i jnd v v M d v v ; (Lemma 11)1)

otherwise * *(,) = ∞i jnd v v .;

A Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs 215

endif;
endif;

endif;
end FINDNSP 1

Lemma 17. The time complexity of the procedure FINDNSP 2 is O (n).
Proof : In the procedure FINDNSP 2 we find the next-to-shortest distance between any two
non-adjacent vertices of M. First we consider the shortest path between the vertices of M.
The time complexity to find the shortest path between any pair of vertices is O (n) [13].
Also, we need to find next-to-shortest distance between any two adjacent vertices. We
know the time complexity to find next-to-shortest distance between any two adjacent vertices
is O (n) (Lemma 16). So, the time to find the next-to-shortest distance of any two non-
adjacent vertices of M is O (n). Therefore, the time complexity of the procedure FINDNSP 2
is O (n).

The following procedure end FINDNSP 3 is designed based on the results of the lemmas
12 to 15. This procedure determines the next-to-shortest distance between two vertices u,
v ∈ D and (u,v) ∉ E.

Procedure FINDNSP 3
// This procedure determines the next-to-shortest between two vertices of D, when

they are not adjacent. //

If (,)∉i jv v E .

If there exist an edge * *
1(,)+i iu u on the shortest path between vi and vj such that

* *
1(,) 2+ =i ind u u then (,) (,) 1= +i j i jnd v v nd v v ; (Lemma 12)

else if there does not exist an edge * *
1(,)+i iu u on the shortest path between *

iv and *
jv

such that * *
1(,) 2+ =i ind u u

else if vi, ∈ D, vj ∈ M then *(,) (,) 1= +i j i jnd v v nd v v where *(,)∈i iv v E for * ∈iv M ;

(Lemma 13)

else if vi, vj ∈ D then * *(,) (,) 2= +i j i jnd v v nd v v where *(,)∈i iv v E

*(,)∈j jv v E for * *, ∈i jv v M ; (Lemma 14)

else if (,)∈iv x E and (,)∈jv x E for a vertex v ∈ M then (,) = ∞i jnd v v ; (Lemma 15)

endif;
endif;

216 Swagata Mandal et al.

endif;
end FINDNSP 3

Lemma 18. The time complexity of the procedure FINDNSP 3 is O(n).
Proof : In the procedure FINDNSP 3 we find the next-to-shortest distance between any two
non-adjacent vertices of D. Here we determine the shortest path and their distance between
the vertices of D. This can be done in O(n) time [13]. Also, we need to find next-to-shortest
distance between any two adjacent vertices. We know the time complexity to find next-to-
shortest distance between any two adjacent vertices is O(n) (Lemma 16). So, the time
required to find the next-to-shortest distance of any two non-adjacent vertices of D is O(n).
Hence, the time complexity of the procedure FINDNSP 3 is O(n).

Combining all these procedure and lemmas presented in this section, we have designed
the algorthm NEXTSP between all pairs of vertices of a circular-arc graph.

Algorithm NEXTSP
Input : Afamily of circular arcs A of a circular-arc graph G.
Output : All pairs next-to-shortest distances nd(u,v), u, v ∈ V.
Step 1 : Find all pair shortest paths and their distances using the algorithm of

Saha et al. [13].
Step 2 : Compute M and the vertices of it.
Step 3 : Find next-to-shortes distance between two adjacent vertices u and v, u,

v ∈ V. using the proceding FINDNSP 1.
Step 4 : Find next-to-shortest distance between any two non-adjacent vertices of

M, using the procedure FINDNSP 2.
Step 5 : Find next-to-shortest distance between u, v ∈ D, where

(u,v) ∉ E,using the procedure FINDNSP 3.
end NEXTSP

Lemma 19. The time complexity of the algorithm NEXTSP is O(n2).
Proof : In algorithm NEXTSP Step 1 takes O(n2) time by the algorithm of Saha et al. [13].
Step 2 takes O(n) by the Theorem 1. The time complexity to find next-to-shortest distance
between any two adjacent vertices is O(n). So the time required to find next-to-shortest
distance between all pair of adjacent vertices is O(n2). So, Step 3 takes O(n2) time. Again,
to find the next-to-shortest distance between any two vertices of M, the time requires O(n)
(Lemma 17). So the time complexity to find next-to-shortest distance between all pair non-
adjacent vertices of M is O(n2). Therefore, Step 4 takes O(n2) time. Similarly, Step 5 takes
O(n2f) time (Lemma 18). Hence the total time complexity of the Algorithm NEXTSP O(n2).

By Lemma 19 we can conclude the following theorem.
Theorem 2. The next-to-shortest distances between all-pairs of vertices of a circular-
arc graph can be computed O(n2) time, where n is the number of vertices.

A Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs 217

REFERENCES

1. Atallah, M. J., Chen, D.Z. and Lee, D.T. (1995). An optimal algorithm for shortest paths on
weighted interval and circular-arc graphs with applications, Algorithmica, 14, 429-441.

2. Eppstein, D. (1999). Finding the k-shortest paths, SIAM J. Comput, 28, 652-441.

3. Eschen, E. M. and Spinrad, J. P. (1993). An O (n2) algorithm for circular-arc graph recognition,
In Proc : 4th Annual ACM-SIAM Symposium on Discrete Algorithm, Austin, TX, 128-137.

4. M. C. Golumbic, Algorithm Graph Theory and Perfect Graphs, (2004), Elsevier.

5. Hsu W. -L. and Tsai, K. -H. (1991). Linear time algorithms on circular-arc graphs, Information
Processing Letters, 40, 123-129.

6. Jimenez, V. M. and Marzaj, A. (1999). Computing the k shortest paths : a new algorithm and
experimental comparison, in : J. S Vitter, C. D. Zaroliagis (Eds.), Algorithm Engineering : 3rd
International Workshop, WAE ’99, in : Lecture Notes in Compute. Sci., vol. 1668, Springer,
Berlin, 15-29.

7. Krasikov, I. and Noble, S. D. (2004). Finding next-to-shortest paths in a graph, Information
Processing Letters, 92, 117-119.

8. Lalgudi, K. N. and Papaefthymiou, M. C. (1997). Computing strickly second shortest path,
Information Processing Letters, 63, 177-181.

9. Mondal, S., Pal, M. and Pal, T. k. and (2002). An optimal algorithm for solving all-pairs shortes
paths on trapezoid graphs, Inter. J. computational Engineering Science, 3 (2), 103-116.

10. Mondal, S., Pal, M. and Pal, T. K. and (2003). An optimal algorithm to solve all-pairs shortest
paths problem on permutation graphs, Journal of Mathematical Modelling and Algorithms,
2, 57-65.

11. Pal, M. and Bhattacharjee, G. P. (1996). A sequential algorithm for finding a maximum weight k-
independent set on interval graph, Intern. J. Computer Math., 60, 205-214.

12. Pal, M. and Bhattacharjee, G. P. (1997). An optimal parallel algorithm for all-pairs shortest
paths on unweighted interval graphs, Nordic J. Computing, 4, 342-356.

13. Saha, A., Pal, M. and Pal, T. K. (2005). An optimal parallel algorithm for solving all-pairs
shortest paths problem on circular-arc graphs, J. Applied Mathematics and Computing, 17,
1-23.

14. Seidel, R. (1992). On the all pairs shortest path problem, In Proceedings of 24th ACM STOC,
ACM Press, 745-749.

15. Tucker, A. (1980). An efficient test for circular-arc graph, SIAM J. Comput., 9, 1-24.

