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ABSTRACT 

In this study, we explore the concept of �-polar fuzzy (�PF) detour �-eccentric nodes 
within �-polar fuzzy graphs (�PFGs). We delve into the idea of �PF detour �-interior 
nodes and �PF detour �-boundary nodes, examining their significance and properties. 
Additionally, we establish the relationship between �PF detour �-boundary vertices and 
�PF cut vertices. 
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1. Introduction 
In various domains such as artificial intelligence, operations research, signal processing, 
network routing, robotics, electrical engineering, and medical science, graph theory plays 
a crucial role [37]. The introduction of fuzzy sets by Zadeh in 1965 revolutionized the field, 
providing enhanced precision in both theory and application. Rosenfeld’s pioneering work 
in 1975 laid the foundation for fuzzy graph theory, which finds numerous applications 
across different fields [32]. The concept of �PF sets, introduced by Chen et al. in 2014, 
led to the development of �-polar fuzzy graphs (�PFGs), explored extensively by Ghorai 
and Pal, Singh, and others [1, 14, 13, 21]. Singh extended this concept further by defining 
�-polar fuzzy graph representations using lattice theory and exploring various properties 
and applications [22, 23]. Bhutani, Rosenfeld, Mathew, Sunitha, and others contributed to 
defining different arc types, bridges, trees, cycles, cut nodes, and end nodes in fuzzy graphs 
[3, 29]. Rashmanlou et al. [30, 31] presented some work on bipolar and interval-valued 
fuzzy graphs. Samanta and Pal defined fuzzy planar graphs [35]. Ghorai and Pal 
investigated the isomorphic properties of �-polar fuzzy graphs [16]. 

Mandal et al. introduced the notion of strength of connectedness in �PFGs and 
explored different types of fuzzy graphs with operations and applications [28, 27, 34]. 
Concepts such as fuzzy detour � -distance, � -distance, � -boundary nodes, � -interior 
nodes, and �-eccentric nodes were introduced by Linda, Sunitha, Rosenfeld, Bhutani, 
Sameena, and others, expanding the understanding of fuzzy graph theory [17, 3, 18, 33]. 
Chartrand and his colleagues defined detour-related concepts such as detour center, detour 
number, detour set, and detour basis, further enriching the field [6, 9, 8, 7]. In this paper, 
we introduce and explore �PF detour �-distance, �PF detour �-interior nodes, and 
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�PF detour �-boundary nodes, along with their properties and relationships, contributing 
to the advancement of fuzzy graph theory [20]. For comprehensive coverage of fuzzy graph 
theory, readers are referred to the book [20]. 

 
2. Preliminaries 
Firstly, we define �PFGs and other related terms. 
In this paper, we examine the �-power of [0,1], denoted as [0,1]
, as a partially ordered 
set (poset) with point-wise order ≤. The relation ≤ is defined as follows: for any �
, �
 ∈
[0,1]
 , �
 ≤ �
  if and only if ��(�
) ≤ ��(�
)  for each � = 1,2, … , � , where 
��: [0,1]
 → [0,1] represents the �-th projection mapping. 

 
Definition 2.1. [11] An �-polar fuzzy graph ( �PFG) of a graph �∗ = (�, �) is a pair 
� = (�, �, �) where �: � ! → [0,1]
 and �: � → [0,1]
 are an �PF set in � !  and an 
� PF set in �  respectively such that �� ∘ �(#, $) ≤ ��%{�� ∘ �(#), �� ∘ �($)}  for all 
(#, $) ∈ � ! , for each � = 1,2, … , �  and �(#, $) = 0 for all (#, $) ∈ (� ! − �) , (The 
smallest element in [0,1]
 is 0 = (0,0, … ,0)).  
 

                         
Figure 1: A 2PFG 

  
Definition 2.2. [10] If an �PFG � = (�, �, �) satisfies the relation  

 �� ∘ �(�, )) = ��%{�� ∘ �(�), �� ∘ �())}, *+, #.. �, ) ∈ �, � = 1,2,3, … , �. 
 
Definition 2.3. [28] A path 1
 = 23, 2 , … , 24 = 2
 in �PFG G is said to be an �PF 
path if this path satisfies the relation �� ∘ �(25, 2563) > 0, (8 = 1,2, … , % − 1) for at least 
one � and all the vertices are distinct except 23 which may be the same as 24.  

 
Definition 2.4. [28] The strength of the �PF path 9: 1
 = 23, 2 , … , 24 = 2
 in �PFG 
� is defined as  

 :(9) = (�3
4(1
, 2
), � 

4(1
, 2
), … , �

4 (1
, 2
)), 

where, �;
4(1
, 2
) = min

3?�@5?4
(�; ∘ �(2� , 25)), A = 1,2, … , �. 

BCDDE(1
, 2
)  is the strength of connectedness between 1
  and 2
  and is 
defined as  

 BCDDE(1
, 2
) = ((max
4∈H

(�3
4(1
, 2
)), (max

4∈H
(� 

4(1
, 2
)), … (max
4∈H

(�

4 (1
, 2
))). 
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Definition 2.5. [28] An �PFG is said to be �PF connected graph if (�� ∘
�(#
, $
))I > 0, for at least one � = 1,2,3, … , � .  

 
Definition 2.6. [28] A 1
 − 2
 path 9: 1
 = 23, 2 , … , 24 = 2
 in �PFG � is said to 
be a strongest �PF 1
 − 2
 path if :(9) = BCDDE(1
, 2
).  
 
Definition 2.7. [28] An edge (#
, $
) of an �PFG � is said to be strong �PF arc if 
�(#
, $
) ≥ BCDDEK(LM,NM)(#
, $
).  
 
Definition 2.8. [28] A path 9: � = �3, � , … , �4 = � from � to � is called strong �PF 
path if (�� , ��63) is strong �PF arc for all 1 ≤ � ≤ % − 1.  
 
Definition 2.9. [28] A vertex � is an �PF cut vertex of � if removing it from � reduces 
the connectedness strength between some other pair of nodes �.  
 
Definition 2.10. [28] An �PFG �  is called an �PF tree if it has a spanning �PF 
subgraph O′  which is an � -polar F-tree and such that for all � , �� ∘ �′(�, �) = 0 
implies �� ∘ �(�, �) < �� ∘ BCDDR
(�, �).  

 
Definition 2.11. A maximum spanning �PF tree of a connected �PFG � = (�, �, �) is 
an �PF spanning subgraph S of �, which is a � polar F-tree, such that BCDDE(1, 2) 
is the strength of the unique strongest 12 �PF path in S for all 1, 2 ∈ �.  

 
3. �PF detour � distance, �PF detour � periphery and �PF detour � eccentric 
subgraph 
First we define � -polar fuzzy(� PF) detour �  distance and then � PF geodesic � 
distance. Then we defined �-polar fuzzy(�PF) detour � periphery and discussed the 
characterization of �-polar fuzzy (�PF) detour � eccentric node. 

 
Definition 3.1. The length of a T − U  strong � PF path 9  between T  and U  in 
connected �PFG � is called an �PF detour � distance if there does not exist other 
strong �PF path longer than 9 between # and $ and we denote it by �9VWX(T, U). 
Any T − U strong �PF path with length �9VWX(T, U) is said to be a T − U �PF �-
detour. 
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Figure 2:  Connected 3PFG �. 

  
Example 3.2. Suppose � be a connected 3PFG of the graph �∗ = (�, �) where � =
{*, Y, U, T, $, #} and � = {($, U), ($, T), (#, $), (U, Y), (Y, *), (#, *), (T, U), (#, Y)} (see 
Fig. 1). For the 3PF graph of Figure 1, it is seen that all arcs except (U, T), (#, $) and 
(*, Y) are strong 3PF arc and the 3PF detour �-distance of two nodes are given below: 
 39VWX(#, $) = 3, 39VWX(#, *) = 1, 39VWX(#, Y) = 1, 39VWX(#, U) = 2, 
39VWX(#, T) = 4, 39VWX(*, Y) = 2, 39VWX(U, *) = 3, 39VWX(*, T) = 5, 
39VWX(*, $) = 4, 39VWX(Y, U) = 1, 39VWX(Y, $) = 2, 39VWX(Y, T) = 3, 
39VWX(U, $) = 1, 39VWX(U, T) = 2 and 39VWX($, T) = 1.  

 
Definition 3.3. The length of any smallest strong path from # to $ is called the �PF 
geodesic distance, denoted by �9VWX(#, $).  

 
The �PF detour � eccentricity Y
\]^_

(�) for a node � is an �PF detour � 

distance from �  to a vertex maximum from �  which implies Y
\]^_
(�) =

max(�9VWX(�, #)),  ∀ # ∈ �. Suppose � be a node and each node whose �PF detour 
� distance is equal to Y
\]^_

(�) then these vertex is called an �PF detour � eccentric 

node. The set of all �PF detour � eccentric nodes of � is denoted by �9VWX(�). The 
� PF detour �  radius of � , symbolized as ,#U
\]^_

(�)  and which is defined as 

minY
\]^_
(�), ∀ � ∈  �. If Y
\]^_

(�) = ,#U
\]^_
(�), then the vertex � ∈ � is said to 

be the �PF detour � central node of �. The �PF detour � diameter of � is symbolized 
by U�#�
\]^_

(�), is defined as maxY
\]^_
(�), ∀ � ∈ �. A node U in a � is called an 

�PF detour � peripheral node of � if Y
\]^_
(U) = U�#�
\]^_

(�). 
 

Example 3.4. For the connected �PFG � in Fig. 1, Ya\]^_
(T) = 5, Ya\]^_

($) = 4, 

Ya\]^_
(#) = 4, Ya\]^_

(U) = 3, Ya\]^_
(Y) = 3, Ya\]^_

(*) = 5 and ,#Ua\]^_
(�) =

3, U�#�a\]^_
(�) = 5.  

 
Definition 3.5. An � PFG �  is an � PF � -detour graph if �9VWX($, #) =
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�9VWX($, #), ∀ ($, #) ∈ �.  
 

Definition 3.6. The �PF subgraph of an �PFG � is induced by the only �PF detour 
� peripheral node of �, now the subgraph is called �PF detour � periphery of � and 
it is symbolized by (9Y,
\]^_

(�)).  
 
Definition 3.7. If each node of a connected �PFG � is �PF detour � eccentric node, 
then �  is said to be an �PF detour � eccentric graph. An �PF detour � eccentric 
subgraph of � is an �PF subgraph of �, generated by the set of all �PF �-eccentric 
nodes of � is called, it is symbolized as �TT
\]^_

(�).  
 
Example 3.8. For the 3PF graph of Figure 2, nodes #, $, U are �PF detour �-periphery 
nodes since Ya\]^_

(#) = 4 , Ya\]^_
($) = 4 , Ya\]^_

(T) = 3 , Ya\]^_
(U) = 4 , 

Ya\]^_
(Y) = 3 and U�#�a\]^_

(�) = 4. Here 9Y,a\]^_
(�) of �PFG shown in Figure 

2.  
 

 
Figure 3:  Connected 3PF graph � and its 9Y,a\]^_

(�). 
  

Example 3.9. From Figure 1, we get 39VWX(#) = {U, $}, 39VWX($) = {#}, 
39VWX(T) = {#, U, $}, 39VWX(U) = {#}, 39VWX(Y) = {U, $}. Its �TTa\]^_

(�) is 
shown in Figure 2.  
 
Definition 3.10. The �PF subgraph of an �PFG � is induced by the only �PF detour 
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� central nodes is called �PF detour � centre subgraph, symbolized by B
\]^_
(�). A 

graph �  is called �PF detour � self centered graph if each vertices of �  are �PF 
detour � central nodes. In every �PF detour � self centered graph, ,#U
\]^_

(�) =

U�#�
\]^_
(�).  

  
Theorem 3.11. Each node of an �PFG � is an �PF detour � eccentric iff � is an 
�PF detour � self centrad.  

 
Proof: Let, every vertex be an �PF detour � eccentric node in �. Here we assume that 
� is not an �PF detour � self-centrad graph. So ,#U
\]^_

(�) ≠ U�#�
\]^_
(�) and 

then ∃ a vertex . ∈ � such that Y
\]^_
(.) = U�#�
\]^_

(�). Also, let , ∈ �9VWX(.). 
Let � be a . − , �PF detour in �. Then a vertex A on � must exist for which the vertex 
A is not an �PF detour � eccentric node of �. Also, A cannot be an �PF detour � 
eccentric node for the other node. Again if A is an �PF detour � eccentric node of a node 
# (say), means A ∈ �9VWX(#). Then ∃ an extension of # − A �PF � −detour up to . 
or up to , . But, there is a contradiction between the facts that A ∈ �9VWX(#) . So 
,#U
\]^_

(�) = U�#�
\]^_
(�). Hence � is an �PF detour � self centrad graph. 

Conversely, let us consider � to be an �PF detour � self-centred graph and � ∈
�. Let # ∈ �9VWX(�). So this implies Y
\]^_

(�) = �9VWX(#, �). Again we know each 

node of �  is � PF detour �  central node i.e. Y
\]^_
(�) = ,#U
\]^_

(�) ∀ � ∈ � 

because �  is an � PF detour �  self centrad graph, which means. So we have, 
Y
\]^_

(#) = Y
\]^_
(�) = �9VWX(#, �)  and which implies that � ∈ �9VWX(#) . 

Hence � is an �PF detour � eccentric node. 
 

Theorem 3.12. If � is an �PF detour � self-centred graph with % number of nodes, 
then ,#U
\]^_

(�) = U�#�
\]^_
(�) = % − 1.  

 
Proof: Suppose �  be an � PF detour �  self-centred graph. If possible, let 
U�#�
\]^_

(�) = . < % − 1. 
Suppose �3  and �  are two distinct �PF detour � peripheral paths. Let # ∈

�3, $ ∈ � . So a strong � PF path exists in between #  and $ , because of the 
connectedness of �. Then there exist nodes on �3 and � , whose eccentricity > ., but 
which is impossible because U�#�
\]^_

(�) = . . Hence �3  and �  are not distinct. 
Since �3 and �  are arbitrary, so then there exists a vertex � in � which � present in 
all �PF detour � peripheral paths. So, Yd.].^_

(�) < ., which is also impossible, because 

� is an �PF detour � self centrad. Hence, U�#�
\]^_
(�) = % − 1 = ,#U
\]^_

(�). 
 

Corollary 1. Let � be a connected �PFG with % number of vertices. Then 
9Y,
\]^_

(�) = � iff the �PF detour � eccentricity of every node of � is % − 1.  
 

Proof: Let 9Y,
\]^_
(�) = � . Then Y
\]^_

(#) = U�#�
\]^_
(�), ∀ # ∈ � . So every 

node of � is an �PF detour � periphery node. Therefore, � is an �PF detour � self-
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centred graph and ,#U
\]^_
(�) = U�#�
\]^_

(�) = % − 1 . So, the � PF detour � 
eccentricity of each node of � is % − 1. 

Conversely, let the �PF detour � eccentricity of each node of � is % − 1. So 
,#U
\]^_

(�) = U�#�
\]^_
(�) = % − 1. All nodes of � are �PF detour � peripheral 

nodes and hence 9Y,
\]^_
(�) = �. 

 
Corollary 2. For a connected �PFG �, �TT
\]^_

(�) = � if and only if the �PF 

detour � eccentricity of each vertex of � is % − 1.  
 

Proof: Suppose �TT
\]^_
(�) = � . So every node of �  is �PF detour �  eccentric 

node. Therefore �  is � PF detour �  self centrad graph and ,YU
\]^_
(�) =

U�#�
\]^_
(�) = % − 1. Hence the �PF detour � eccentricity of each node of � is % −

1. 
Conversely, let the �PF detour � eccentricity of each node of � is % − 1. So 

,#U
\]^_
(�) = U�#�
\]^_

(�) = % − 1. All nodes of � are �PF detour � peripheral 

nodes as well as �PF detour � eccentric node. Hence, �TT
\]^_
(�) = �. 

 
Theorem 3.13. In a connected �PFG �, a node # is an �PF detour � peripheral 
node if and only if # is an �PF detour � eccentric node.  

 
Proof: Let us assume that $ ∈ 9Y,
\]^_

(�). So there exists an �PF detour � peripheral 
node, say $ (distinct from #). Therefore, # is an �PF detour � eccentric node of #. 

Conversely, let us that # be an �PF detour � eccentric node of � and let # ∈
�9VWX($). Let � and � be two �PF detour � peripheral nodes, then �9VWX(�, �) =

U�#�
\]^_
(�) = A(e#�). Let �3 and �  be any � − � and $ − # �PF � detour in � 

respectively. Then two cases will arise. 
 
Case 1: When # is not an internal node in � i.e., there is only one node, say T which is 
adjacent to #. So T ∈ � . Since � is connected, T is connected to a node of �3, say T
. 
So either T
 ∈ �  or T
 ∈ (�3 ∩ � ). Thus in any case the path from $ to � or $ to % 
through T and T
 is longer than � . But it is impossible since # is an �PF detour � 
eccentric node of $. Hence Y
\]^_

($) = U�#�
\]^_
(�) i.e, # ∈ 9Y,
\]^_

(�). 

 
Case 2: When # is an internal node in �, then there exists a connection between # to � 
and #  to % , because of the connectedness of � . Then $ − #  �PF �  detour can be 
extended to � or %. This is impossible because # is an �PF detour � eccentric node of 
$. Hence Y
\]^_

($) = U�#�
\]^_
(�) i.e., # is an �PF detour � peripheral node of 

�. 
 

4. Conclusion 
In this article, we introduced concepts such as �PF detour �-distance, and �PF detour 
� -interior nodes within the context of � -polar fuzzy graphs (� PFGs), along with 
exploring their properties. Theorems pertaining to �PF detour �-interior nodes, �PF 
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detour �-boundary nodes, and �PF cut nodes in �PFGs were established, utilizing the 
framework of maximum �PF spanning trees. Additionally, we are extending our research 
to define the connectivity index on �-polar fuzzy graphs and investigate its properties. 
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