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ABSTRACT

In this study, we explore the conceptmfpolar fuzzy (nPF) detourg-eccentric nodes
within m-polar fuzzy graphsmtPFGs). We delve into the idea ofPF detourg-interior
nodes andnPF detourg-boundary nodes, examining their significance araperties.
Additionally, we establish the relationship betweaPF detourg-boundary vertices and
mPF cut vertices.
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1. Introduction

In various domains such as artificial intelligenoperations research, signal processing,
network routing, robotics, electrical engineeriagd medical science, graph theory plays
a crucial role [37]. The introduction of fuzzy sbtsZadeh in 1965 revolutionized the field,
providing enhanced precision in both theory andiegiion. Rosenfeld’s pioneering work
in 1975 laid the foundation for fuzzy graph theomhich finds numerous applications
across different fields [32]. The conceptmPF sets, introduced by Chen et al. in 2014,
led to the development ofi-polar fuzzy graphs®{PFGs), explored extensively by Ghorai
and Pal, Singh, and others [1, 14, 13, 21]. Singéreled this concept further by defining
m-polar fuzzy graph representations using latti@otia and exploring various properties
and applications [22, 23]. Bhutani, Rosenfeld, MathSunitha, and others contributed to
defining different arc types, bridges, trees, cycteit nodes, and end nodes in fuzzy graphs
[3, 29]. Rashmanlou et al. [30, 31] presented samek on bipolar and interval-valued
fuzzy graphs. Samanta and Pal defined fuzzy plamaphs [35]. Ghorai and Pal
investigated the isomorphic propertiesmfpolar fuzzy graphs [16].

Mandal et al. introduced the notion of strengtltofinectedness imPFGs and
explored different types of fuzzy graphs with opierss and applications [28, 27, 34].
Concepts such as fuzzy detogrdistance,g-distance,g-boundary nodesg -interior
nodes, andg-eccentric nodes were introduced by Linda, SunifRe@senfeld, Bhutani,
Sameena, and others, expanding the understandilngaf graph theory [17, 3, 18, 33].
Chartrand and his colleagues defined detour-relatadepts such as detour center, detour
number, detour set, and detour basis, further leingcthe field [6, 9, 8, 7]. In this paper,
we introduce and exploreiPF detourg-distance,mPF detourg-interior nodes, and
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mPF detourg-boundary nodes, along with their properties afatimnships, contributing
to the advancement of fuzzy graph theory [20].demnprehensive coverage of fuzzy graph
theory, readers are referred to the book [20].

2. Preliminaries

Firstly, we definemPFGs and other related terms.

In this paper, we examine the-power of [0,1], denoted g%,1]™, as a partially ordered
set (poset) with point-wise ordet. The relation< is defined as follows: for any’,y’ €
[01]™, x' <y' if and only if p;(x") <p;(y") for eachi=1,2,..,m, where
p;i:[0,1]™ — [0,1] represents théth projection mapping.

Definition 2.1. [11] An m-polar fuzzy graph ( mPFG) of agraph ¢* = (V,E) isa pair
G = (V,A,B) where B:V2 - [0,1]™ and A:V — [0,1]™ arean mPF setin V2 and an
mPF set in V respectively such that p; o B(a, b) < min{p; o A(a),p; o A(b)} for all
(a,b) € V2, for each i = 1,2,...,m and B(a,b) =0 for al (a,b) € (V2 —E), (The
smallest element in [0,1]™ is 0 = (0,0, ...,0)).

v1(0.3,0.5) (0.1,0.3) 9(0.1,0.3)

(0.3.0.5) (0,0.2)

v4(0.4,0.6) (0.3.0.5)  5(0.7,0.9)
Figurel: A 2PFG

Definition 2.2. [10] If an mPFG G = (V, A, B) satisfiestherelation
pi° B(x,z) = min{p; c A(x),p; e A(2)}, forall x,z€ V,i =123, ...,m.

Definition 2.3. [28] A path u' = vy, v,,...,v, = v' in mPFG G is said to be an mPF
path if this path satisfiesthe relation p; e B(vj, vj41) > 0, (j = 1,2, ...,n — 1) for at least
one i and all the vertices are distinct except v, which may be the same as v,,.

Definition 2.4. [ 28] The strength of the mPF path P:u' = vy, v, ...,v,, = v’ in mPFG
G isdefined as
S(P) = (BY (W, v"), BY W, v"), .., Bip(u', v")),

where, B (u',v") = ) m<1n (pk e By, v))), k =1.2,...,m.
<i<jsn

CONN;(u',v") is the strength of connectedness betweénand v’ and is
defined as

CONNG (', v") = ((max(BE (', v")), (max(BE(u',v")), ... (max(Ba (', v"))).
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Definition 2.5. [28] An mPFG issaid to be mPF connected graph if (p; °
B(a',b'))* > 0,for atleastone i = 1,2,3,...,m .

Definition 2.6.[28] A u’' — v’ path P:u' = vy,v,,...,v, =v' in mPFG G issaidto
beastrongest mPF u' — v’ pathif S(P) = CONNg(u',v").

Definition 2.7. [28] Anedge (a’,b") of an mPFG G issaid to be strong mPF arcif
B(a’,b’) = CONNG_(a”b’)(a’,b’).

Definition 2.8. [28] Apath P:x = xq,x5,...,x, = y from x to y iscalled strong mPF
pathif (x;, x;41) isstrong mPF arcforall 1<i<n-—1.

Definition 2.9. [28] A vertex y isan mPF cut vertex of G if removingit from G reduces
the connectedness strength between some other pair of nodes G.

Definition 2.10. [28] An mPFG G is called an mPF tree if it has a spanning mPF
subgraph H' which is an m-polar F-tree and such that for all i, p; o B'(x,y) =0
implies p; e B(x,y) < p; e CONNy,(x,y).

Definition 2.11. A maximum spanning mPF tree of a connected mPFG G = (V,4,B) is
an mPF spanning subgraph T of G, whichisa m polar F-tree, such that CONN; (u, v)
isthe strength of the unique strongest uv mPF pathin T for all u,v € G.

3. mPF detour g distance, mPF detour g periphery and mPF detour g eccentric
subgraph

First we definem-polar fuzzy(m PF) detourg distance and themPF geodesicg
distance. Then we defined-polar fuzzynPF) detourg periphery and discussed the
characterization ofn-polar fuzzy ;mPF) detourg eccentric node.

Definition 3.1. The length of a ¢ —d strong m PF path P between ¢ and d in
connected mPFG G is called an mPF detour g distance if there does not exist other
strong mPF path longer than P between a and b and we denote it by mPFD,(c, d).
Any ¢ — d strong mPF path with length mPFDg(c,d) is said to be a ¢ —d mPF g-
detour.
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(0.3,0.1,0.5)
(0.6.0.4,0.8)

(0.7,0.5,0.9)

(0.6.0.4,0.8)
(0.2,0,0.4)

e (0.6.0.4,0.8) d
Figure2: ConnecteBPFGG.

Example 3.2. Suppose G be a connected 3PFG of thegraph ¢* = (V,E) where V =
{f,e.d,c,b,a} and E = {(b,d), (b,c), (a, b), (d,e), (e, f), (@ f), (c, d), (a e)} (see
Fig. 1). For the 3PF graph of Figure 1, it is seen that all arcs except (d, ¢), (a,b) and
(f,e) arestrong 3PF arc and the 3PF detour g-distance of two nodes are given below:
3PFD,(a,b) = 3, 3PFDy(a,f) = 1, 3PFD,(a,e) = 1, 3PFD,(a,d) = 2,
3PFDy(a,c) = 4, 3PFDy(f,e) = 2, 3PFD,(d, f) = 3, 3PFD,(f,c) = 5,
3PFD,(f,b) = 4, 3PFD,(e,d) = 1, 3PFD,(e,b) = 2, 3PFD,(e,c) = 3,
3PFDy(d,b) =1, 3PFDy(d,c) = 2 and 3PFDy(b,c) = 1.

Definition 3.3. The length of any smallest strong path from a to b is called the mPF
geodesic distance, denoted by mPF D, (a, b).

The mPF detourg eccentricityemPFDg(y) for a nodey is anmPF detourg
distance fromy to a vertex maximum fromy which implies emppug()’) =
max(mPFDy(y,a)), ¥ a € G. Supposey be a node and each node whaseF detour
g distance is equal tenprp, (y) then these vertex is called atPF detourg eccentric
node. The set of alinPF detourg eccentric nodes of is denoted bynPFD,(x). The
mPF detourg radius of G, symbolized asradeFDg(G) and which is defined as

minemPFDg(x),Vx € G.If emPFDg(x) = radeFDg(G), then the vertex € G is said to

be themPF detourg central node of;. The mPF detourg diameter ofG is symbolized
by diammpmg (G), is defined asnaxepmprp, (x),Vx € G. Anoded inagG is called an

mPF detourg peripheral node of: if emPFDg(d) = diammpmg(G)-

Example 3.4. For the connected mPFG G inFig. 1, egpng(c) =75, egpng(b) =4,
esprp, (@) = 4, e3ppp,(d) = 3, e3ppp,(€) = 3, e3prp, (f) = 5 and radsprp, (G) =
3, diam3PFDg(G) = 5.

Definition 3.5. An m PFG G is an m PF g -detour graph if mPFD,(b,a) =

34



Certain Types of Vertices in m-Polar Fuzzy Graphs
mPFDy(b,a),V (b,a) € E.

Definition 3.6. The mPF subgraph of an mPFG G isinduced by the only mPF detour
g peripheral node of G, now the subgraph is called mPF detour g periphery of G and
it is symbolized by (PeTmPFDg (@)).

Definition 3.7. If each node of a connected mPFG G is mPF detour g eccentric node,
then G is said to be an mPF detour g eccentric graph. An mPF detour g eccentric
subgraph of G is an mPF subgraph of G, generated by the set of all mPF g-eccentric
nodes of G iscalled, itissymbolized as ECCmPFDg(G)-

Example 3.8. For the 3PF graph of Figure 2, nodes a, b, d are mPF detour g-periphery
nodes since e3PFDg(a) =4, eBPFDg(b) =4, eBPFDg(C) =3, eBPFDg(d) =4,
e3PFDg (e) = 3 and dlam3PFDg(G) = 4‘ Hel’e PeT3PFDg(G) Of mPFG ShOWﬂ |n Flgure
2.

(0.6,0.5,0.3) (0.9,0.8,0.6)
a (0.6,0.5,0.3) %
(0.9,0.8,0.6)
i 1.0.9,0.5
(1,0.9,0.7) c ( 5)
(0.7.0.6,0.4)
(0.8.0.7,0.5)
e (0.7,0.6,0.4) d
(1,1,0.4) (0.8,0.7,0.6)
G‘
(0.6,0.5,0.3) (0.9,0.8, 0.6)
a (0.6.0.5.0.3) b
® ]

Figure3: Connected3PF graphG and itsPer3PFDg(G).

Example 3.9. FromFigure 1, we get 3PFD,(a) = {d, b}, 3PFD4(b) = {a},
3PFDy(c) ={a,d, b}, 3PFDy4(d) = {a}, 3PFD,(e) = {d,b}.Its ECC3PFDg(G) is
shown in Figure 2.

Definition 3.10. The mPF subgraph of an mPFG G isinduced by the only mPF detour
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g central nodesis called mPF detour g centre subgraph, symbolized by CmPFDg(G). A
graph G is called mPF detour g self centered graph if each vertices of G are mPF
detour g central nodes. In every mPF detour g self centered graph, radmprp, (G) =

diammPFDg (G).

Theorem 3.11. Each node of an mPFG G is an mPF detour g eccentric iff G is an
mPF detour g self centrad.

Proof: Let, every vertex be amPF detourg eccentric node iri;. Here we assume that
G is not anmPF detourg self-centrad graph. SmdeFDg(G) * diammPFDg (¢) and
then3 a vertexl € G such thatemPFDg = diammPFDg (G). Also, letr € mPFD,(1).
Let B be al —r mPF detourinG. Then a vertexk on B must exist for which the vertex
k is not anmPF detourg eccentric node oB. Also, k cannot be ammPF detourg
eccentric node for the other node. Agaitk ifs anmPF detourg eccentric node of a node
a (say), meang € mPFD,(a). Then3 an extension ok — k mPF g —detour up tol
or up tor. But, there is a contradiction between the fabtt & € mPFD,(a). So
radeFDg ) = diammpmg (G). HenceG is anmPF detourg self centrad graph.

Conversely, let us considér to be anmPF detourg self-centred graph and €
V.Leta € mPFDy(x). So this implieSemPFDg (x) = mPFDgy(a,x). Again we know each
node of G is mPF detourg central node i.eemPFDg(y) = radyprp,(G)Vy €G
becauseG is an m PF detourg self centrad graph, which means. So we have,
empFD, (a) = empFDg(x) = mPFDgy(a,x) and which implies thatx € mPFD,(a) .
Hencex is anmPF detourg eccentric node.

Theorem 3.12. If G isan mPF detour g self-centred graph with n number of nodes,
then TadmpFDg (G) = diammPFDg (G) =n-1.

Proof: Suppose G be an m PF detour g self-centred graph. If possible, let
diammpFDg(G) =l<n-1.

SupposeB; and B, are two distinctmPF detourg peripheral paths. Let €
Bi,b € B,. So a strongm PF path exists in betweea and b, because of the
connectedness af. Then there exist nodes @ andB,, whose eccentricity> [, but
which is impossible becausﬁammPFDg(G) = 1. HenceB; and B, are not distinct.

SinceB; andB, are arbitrary, so then there exists a venteixi G which x present in
all mPF detourg peripheral paths. S@p rp,(x) <1, which is also impossible, because

G is anmPF detourg self centrad. HenceiiammPFDg G)=n—-1= TadeFDg (@).

Corollary 1. Let G bea connected mPFG with n number of vertices. Then
Permprp,, (G) = G iff the mPF detour g eccentricity of every nodeof G isn — 1.

PI’OOf Let PermpFDg(G) = G Then emPFDg (a) = diammpFDg(G),v ae G SO every
node ofG is anmPF detourg periphery node. Thereforé, is anmPF detourg self-
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centred graph andadeFDg(G) = diammPFDg (6) =n—1. So, themPF detourg

eccentricity of each node & isn — 1.
Conversely, let thenPF detourg eccentricity of each node @f isn — 1. So
radmprp, (G) = diamyprp, (G) =n — 1. All nodes ofG are mPF detourg peripheral

nodes and hencBermPFDg(G) =G.

Corollary 2. For a connected mPFG G, EccmpFDg(G) = ¢ if and only if the mPF
detour g eccentricity of each vertex of G isn — 1.

Proof: SupposeEccmPFDg(G) = G. So every node off is mPF detourg eccentric
node. ThereforeG is m PF detour g self centrad graph andedmpFDg(G) =
diamyprp,(G) = n — 1. Hence themPF detourg eccentricity of each node &f is n —
1.

Conversely, let thenPF detourg eccentricity of each node @& isn — 1. So
radeFDg ) = diammpmg (G) = n—1. All nodes ofG are mPF detourg peripheral
nodes as well asmPF detourg eccentric node. Henc&ccmprp, (6) =4G.

Theorem 3.13. In a connected mPFG G, anode a isan mPF detour g peripheral
nodeif and only if a isan mPF detour g eccentric node.

Proof: Let us assume thdt e Petmprp, (G). So there exists amPF detourg peripheral

node, say (distinct froma). Therefore,a is anmPF detourg eccentric node oé.
Conversely, let us that be anmPF detourg eccentric node off and leta €

mPFDy(b). Letx andy be twomPF detourg peripheral nodes, themPFDy(x,y) =

diammpmg (G) = k(say). Let B; andB, be anyx —y andb — a mPF g detourinG

respectively. Then two cases will arise.

Case 1: Whena is not an internal node iG i.e., there is only one node, saywhich is
adjacent toa. Soc € B,. SinceG is connected¢ is connected to a node 8f, sayc'.
So eitherc’ € B, or ¢’ € (B; N B,). Thus in any case the path fradmto m or b ton
throughc andc¢’ is longer thanB,. But it is impossible sincea is anmPF detourg
eccentric node ob. Henceey,prp, (b) = diammpFDg(G) i.e,a€ PermPFDg(G).

Case 2: Whena is an internal node i&, then there exists a connection betwaeto m

and a to n, because of the connectednessGofThenb —a mPF g detour can be
extended tan or n. This is impossible becauseis anmPF detourg eccentric node of
b. HenceempFDg(b) = diammpmg(G) i.e., a is anmPF detourg peripheral node of

G.

4. Conclusion

In this article, we introduced concepts suchra®F detourg-distance, andnPF detour
g -interior nodes within the context ofi-polar fuzzy graphs i PFGs), along with
exploring their properties. Theorems pertainingnt®F detourg-interior nodes;nPF
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detour g-boundary nodes, anedtPF cut nodes immPFGs were established, utilizing the
framework of maximummPF spanning trees. Additionally, we are extendimgresearch
to define the connectivity index amn-polar fuzzy graphs and investigate its properties.
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