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ABSTRACT

In this article, | study and solve the exponerili@phantine equatioM; + (M, + 1)¥ =

(12)? whereM,, and M, are Mersenne primes,is a prime number, and,y andz are
non-negative integers. Several illustrations aesg@nted as well as cases where no solution
of the given Diophantine equation is present.
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1. Introduction
The Diophantine equation is one of the most aitra@nd exciting categories of problems
in number theory. over the years, several reseggdtave been studying the Diophantine
equation of the forne® + b¥ = z2. This includes Aggarwal, Burshtein, Sroysang, Raba
among others([1-8], [11-13]). Some have studiedeherjuations about Mersenne primes(
see definition 1). Their work primarily focuses the case where one of the bageand
b is a Mersenne prime. Sroysang [14] proved thatsihiutions of3x + 2y = z2 are
(0,1,2); (3,0,3) and (2,4,5). Asthana and Singh [6] proved that + 13y = z2 has
exactly four non-negative integer solutions, aresthare(1,0,2), (1,1,4); (3,2,14) and
(5,1,6). Rabago [13] proved that the triplé4$,1,10) and (1,0,2) are the only solutions
to the Diophantine equatiod® + 19¥ = z2, and that(2,1,10) and(1,0,2) are the only
two solutions to3* + 91Y = z2. Sroysang [14] also showed that theé+ 8 = z2 has
the only solution(x, y, z) = (0,1,3). Chotchaisthit [9] aimed to stugyx + (p + 1)y =
z2 in the set of non-negative integers and wherie a Mersenne prime.

In this article, |1 have found a general solutiontioé exponential Diophantine
equationM; + (M, + 1)¥ = (I1z)*> whereM,, andM, are Mersenne Primes, y and
z are non-negative integers ahds a prime number. The motivation behind thiscatis
to find a solution involving the general Mersenming instead of taking any particular
value of it. Methods of modular arithmetic and &aidation of polynomials are used in
proving the results of this article.
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2. Main results
The following definitions and lemmas are neededHar article.

Definition 2.1. A Mersenne prime is a prime number of the f@fn- 1 wherep is a
prime number and is denoted B,

Lemma 2.1. All Mersenne Primes are congruenti¢mod4)
Proof. As any Mersenne Prime is of the fo2fi — 1, we can clearly say that > 2. Now
asp = 2, then2P = 0(mod4) and hence2? — 1 = 3(mod4).

Lemma 2.2. (Mihailescu's theorem)(see [10]) The only soluttorthe Diophantine
equationa* —bY =1isa=3, b=2, x =2 andy = 2 where mifia, b, x,y} > 1.

At first, we consider the case whér= 2. Hence, the following is the first main
theorem of this paper.

Theorem 2.1. Every non-negative integer solution to the equatigh+ (M, + 1)7 =
(22)? is the following tuple(M,,, My, x,y, z) = (3,M,,1,0,1).
Proof: Let us first consider the case when one of themsptx andy is zero.
Case-| At first, if we assume = 0, then we get the following equation
29Y = 472 — 1. (2.1)
Subcase-(a) Iy = 0, then from equation (2.1), we gét? = 2 which is a contradiction.
Subcase-(b) Ify = 1, then from the equation (2.1), we get tifar)? — 29 = 1.
From the lemma (2), the solution of this equatisroinly possible iz =% which is a

contradiction.
Subcase-(c) Ify > 1, then the equation (2.1) can be written(28)? — 297 = 1.
By the lemma (2), we must hawgy = 3. Now asq is a prime number, we get= 3 and
y = 1 which is a contradiction to our assumption.
Case-ll Now we assumge = 0. Then we get the following equation
M} +1 = (22)% (2.2)
Subcase-(a) Ik = 0, then from equation (2.2), we géz? = 2 which is a contradiction.
Subcase-(b) Ifc = 1, then the equation (2.2) can be written(28)? = 2P. Now
let Z =2z andZ = 2%. Then we geR2?% = 2P which in turn givesp = 2a. Asp is a
prime number, we get =1 andp =2. HenceZ =2 and finally, z=1. Hence
(Mp, Mg, x,y,2z) = (3,Mg,1.0,1).
Subcase-(c) ifc > 1, then from the equation (2.2), we get tifar)? — (2P —
1)* = 1. By the lemma (2), we get tha? = 3 which is a contradiction.
Case-lll. Now we consider the case wHeny} = 1. From the lemma (1), we
know thatM,, = 3(mod4) and (M, + 1) = 0(mod4). Hence,
x _ (3(mod4), «x is odd
Mp + (Mg +1)7) = {1(mod4), x is even
Now as4z? = 0(mod4), the equation has no solution wheny} > 1.

Now we will consider the case whénis an odd prime. Then we get the following
theorem
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Theorem 2.2. Every non-negative integer solution to the equath+ (M, + 1)” =
(Iz)? takes one of the following form:
(a)(Mp,Mq,x, y,z)= (M,,7,0,1,1)
_ p+2 2P+1
(b) (Mp'Mq;xryzZ) - (Mp:quszz 1 )
Proof: Let us first assume that one of the exponentndy is zero.

Case-l At first, we assume that= 0.Then we get the equation
1+ (Mg +1)Y = (I2)% (2.3)

Subcase-(a) Iy = 0, then from the equation (2.3), we get (Iz)? which is a
contradiction.

Subcase-(b) Ify = 1, then from the equation (2.3), we get tiiat)? — 29 = 1.
Hence from the lemma (2), we can conclude that3, z=1, andq = 3. Hence,
(Mp, Mg, x,y,2) = (Mp,7,0,1,1) is the only solution wheih = 3.

Subcase-(c) Ify > 1, then from the equation (2.3), we g@t)? — 2%V =1.
Again, from the lemma (2), we get thgg = 3. By using the primality of;, we get that
g = 3 andy =1 which is a contradiction.

Case-ll Now we assumge = 0. Then we get the equation

(Mp)* +1 = (Iz)* (2.4)
Subcase-(a) Ifx = 0, then from the equation (2.4), we g&t= (Iz)?> which is a
contradiction.

Subcase-(b) Ift = 1, then from the equation (2.4), we @8t = (Iz)2. Now as
2P = 0(modl) and (Iz)? = 0(modl), so the above equation has no solution.

Subcase-(c) Ifc > 1, then from the equation (2.4), we get tlibt)? — (M,)*
1. By the lemma (2), we get thaP = 3 which is a contradiction.

Case-lll Now we consider the case wHemy} = 1. Now as we know(lz)?
1(mod4) whenz is odd and

3(mod4), x is odd
(Mp + (Mg +1)7) = {1Emod4§, X is even
. From the above, we can conclude that the equadpn- (M, + 1)¥ = (Iz)* has a
solution only if x is even and: is odd. Thus there exists a positive integesuch that
x = 2k and we get the equatidwzz,k + 29 = (Iz)?. This equation can be written as
(Iz + M) (lz — M) = 29, (2.5)

There exist two non-negative integersand § with @ > g such thata + g =
qy. Then the equation ?? can be written as

(Iz + M} (lz — Mf) = 225, (2.6)
we claim that gcflz + M,’,f, lz — M{,f) # 1. Suppose our assumption is wrong. Tlien+
Mj, 1z — My) = 1. Now from the equation (2.6), we can say that M} = 1. We know
from the lemma (1) tha¥,, = 3(mod4) and henceM{,f = 1,3(mod4). As [ is an odd
prime andz is also odd, theriz = 1,3(mod4). So, Iz —M{,‘ = 0,2(mod4) which is
contradiction to the fackz — Mjf = 1(mod4). Now as gc@z + My, 1z — M) # 1, we
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take Iz + M¥X = 2% and Iz — M¥ = 2F . it implies that2M} = 2f(2%7F — 1) and by
comparing odd and even parts, we get the systerquations:

28 = 2.
207F —1=Mf.
From the above equation, we know tlfat 1 and hence,

1=2%"1— M. (2.7)

By using the lemma (2), we can say that the equdfd7) has no solution i >
2 andk > 1. If a = 2, then from the equatio(2.7), we get thatl\/[,’,@c = 1. This givesk =
0 which is a contradiction to th&t being a positive integer. So the only possibitg =
1 and hencex = 2. Now putting the valuée = 1 in the equation (2.7), we géf,, + 1 =
2971 or equivalently,a =p + 1 Putting the valuesx=p+1 and § =1 in the

relation aff = qy, we gety = e . Now putting the valuex andy in the equation

M2 + (M, +1)? = (Iz)2, we get thatz = 2+

Remark 2.1. From the theorem (2), we can say that the equaliggn+ (M, + 1)” =
2 p+2 2P+1

(Iz)* has a positive integer solutiofM,, M ) It means that given a

Mersenne primeVl,,, the solution can onIy be foundqfdlwdes (p + 2) and alsol
divides (2P + 1) wherel is an odd prime. We need to be careful ahpwnd pick only
thoseq for which M, is a Mersenne prime.

Let us now look at a couple of examples of the Téawo2.2.

Example 2.1. Find all possible positive integer solutions of g#piation8191* +
My +1)Y = (32)? where M, is a Mersenne prime angl is a prime number.

Solution: HereM,, = 8191 implies p = 13. From the theorem (2), we get the
condition thatg dividesp + 2 = 15 which in turn givesg =3 orq =5. If g = 3, we
haveM, =7, y =5 and wheng = 5, we haveMs = 25 —1 =31 andy = 3. Observe
that bothM; and Mg are Mersenne primes. Also for both the cases,3 and hence =

13
2 %1 = 2731. Hence the solution set a@,, M,,x,y,z) = (8191,7,2,52731) and
(M, My, x,y,2) = (8191,31,2,3,2731).

Example 2.2. Find the positive integer solutions of the equatidnt+ 47 = (7z)2
Solution: HereM, =7 where p =3 and M, =3 where g =2. Hence, from the

p“ 2 l“) if g divides (p+2) and I

divides 2P + 1. Now asl = 7 does not divide2? + 1 = 9, the equation has no solution
in positive integers.

Example 2.3. Find the positive integer solutions of the equatdf+ 8”7 = (5z)2.
Solution: HereM, =3 wherep =2 and M, =7 where q =3. Hence, from the

theorem 2, the solution set &,y,z) = (2,—
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theorem 2, the solution set &,y,z) = (2,’0%2,2?1) if g divides (p+2) and

divides 2P + 1. As q = 3 does not dividep + 2 = 4, the equation has no solution in
positive integers.

3. Conclusion and futurework
In this article, using the modular arithmetic methwith the help of Mihailescu’s theorem
2 and using the fact that every Mersenne primé theoform 4k + 3, we have been able
to show the complete list of positive integer solus of the Diophantine equatiavi; +
(M, + 1)Y = (Iz)* wherel is a prime.

The following table represents the solution of Biephantine equatio; +
(Mg +1)Y = (1z)? for the first couple of Mersenee Primes:

M, p |p+2| q M, 2P +1 l (x,y,2)
3 2 4 2 3 5 5 (2,2,1
7 3 5 5 7 9 3 (2,1,3
31 5 7 7 31 33 3 (2,1,11
31 5 7 7 31 33 11 (2,1,3

127 7 9 3 7 12¢ 3 (2,1,43

127 7 9 3 7 12¢ 43 (2,1,3

Table 1: Some possible integer solution of the equaligh+ (M, + 1)¥ = (Iz)?

The next table represents some particular casée &fiophantine equatioM; +
M, + 1)Y = (Iz)? where no solutions can be obtained. The un-sdltialif these
q

equations is due to two main reasons nangeljoes not dividgp + 2) or [ does not
divide (27 +1).

M, p |p+2| ¢q M, |2P+1 l M+ (Mg + 1)Y = (Iz)?
3 2 4 5 31 5 3 3% +32Y = (32)?
7 3 5 7 | 127 9 5 7% + 1287 = (52)3
31 5 7 3 7 33 7 31% 4+ 8Y = (7z2)?
127 | 7 9 5 31 | 12¢ 13 127% + 32Y = (132)?

Table 2: Some of the unsolvable cases of the equaMgnt- (M, + 1)¥ = (Iz)?

Now for possible extensions, the reader may trysdtve the following Diophantine
equations:

(i) M7 + (Mg + k) = z?, wherek > 1, andM, andM, are Mersenne primes.
(i) M{f + (M, + 1)Y = z", wheren > 1, ande and M, are Mersenne primes and,
(i) My + (Mg + k) = z", wherek,n > 1, andM,, and M, are Mersenne primes.
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