2014

M.Sc. Part-II Examination CHEMISTRY

PAPER-VII

Full Marks: 75

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Physical Special)

Answer any five questions taking at least two from each group.

Group-A

(a) Write down the steps involved and the rate of each step for Unimolecular photophysical processes.
 Assuming φ_p + φ_f + φ^T_{ISC} ≅ 1 for a unimolecular photophysical process, Show that,

$$K_{ISC}^{T} = K_{P} \left[\frac{1 - \left(\phi_{p} + \phi_{f}\right)}{\phi_{p}} \right]$$

where symbols have their usual significance. 4+6 (b) Write a short note on p-type delayed emission. 5

- 2. What is meant by static and dynamic quenching of fluorophore? How do you obtain the rate constant of dynamic and static quenching where both the quenching take place simultaneously for a fluorophore?
- 3. (a) What is meant by Twisted Intramolecular Charge Transfer (TICT) emission? Give one such example. 2+1
 - (b) Write down the characteristic features of TICT emission. Explain the effect of polarity and viscosity of medium on TICT emission.
 - (c) What is meant by static and dynamic polarity effect on TICT processes?
- (a) What is anharmonicity effect?
 - (b) What is Coriolis interaction, overtones and 2×3 combination band?
 - (c) Rotational spectra of 1-deutropropyne were studied in five different electric field (∈) at 20°C for J = +1 to +2 and $M_J = \pm 1 \rightarrow = 1$ transition and the following results were reported:

Electric field	Shift lines for $ M_J = 1$ $ K = 1$
(€)	Δγ MC/S
50.36	6.84
64.16	8.12
90.59	11.40
96.95	12.30
144.94	18.23

Calculate the dipole moment of CH₃C ≡ CD molecule.

(d) Draw and explain normal vibrational mode of SiF2 and CO2 molecule.

- 5. (a) Derive Debve Equation and from its derive union of Debye and Lorentz Equation. 5+3
 - (b) For SO₂(g) at 273(K) and 1 atm pressure. dielectric constant is 1.00993. This molecule has a permanent dipole moment of 1.63D. Assuming that SO2 behaves as an ideal gas, calculate per molecule of (i) total, (ii) orientation, (iii) induced polarization and (iv) distortion polarizability.
 - (c) Give molecular interpretation of diamagnetism and paramagnetism.

Group-B

- 6. (a) Write down the characteristic features of LASER radiation.
 - Inversion of population can not be achieved for a two level system' - Explain. 2+8
 - (b) Write a short note on Q-switching of LASER.
- 7. Write down the magnetic interaction Hamiltonian and spin wave function for A - X system. Obtain the zero order as well as first order correction to energy and hence show the frequency of all possible transitions.

3+5+5+2

- 8. (a) What is meant by spin-spin and spin-lattice relaxations in NMR Spectroscopy? 2+2
 - (b) Why are these relaxation processes are essential to observe NMR transitions?

3

- (c) The net effect of spin lattice relaxation is to depopulate the higher spin state than to populate it' - Explain.
- 9. (a) Write the magnetic interaction Hamiltonian of free radical in presence of an external magnetic field. How do you obtain Lande 'g' factor from ESR transition of a free radical? 2+3
 - (b) Deduce the selection rule for ESR transition. Depict the energy levels and possible ESR tramitions of a free radical having four magnetic nuclei with unequal coupling. 4+6
- 10. Write the magnetic interaction Hamiltonian and the spin wavefunctions of H-atom. Use perturbation theory to obtain first order correction to wavefunction for second order correction to energy.

Show that ψ_1 (lowest level) $\longrightarrow \psi_4$ (highest level) is a forbidden tramition for zero as well as first order transitions but it is allowed for second order tramition.

e in partico de la constanta d

vices for little or clus, operations of aneity french

(Organic Special)

Answer any five questions taking at least two from each group.

Group-A

- 1. (a) Predict the theoretical number of non-equivalent proton in each of the following compounds: 1,2-dichloropropane, 3-chloropropene, trans-1,2dichlorocyclopropane, 2-chloro-3-methylbutane.
 - (b) What is Nuclear Overhauser Effect? Explain the reason for this effect.
 - (c) A compound having molecular formula C9H11Br showed the following signals in ¹H NMR data: δ2.25 (2H, m), δ2.75 (2H, t), δ3.38 (2H, t), δ7.22 (5H, s) Determine the structure of the compound with justification.
 - (d) The magnetically equivalent nuclei are chemically equivalent nuclei but the reverse is not true'-Explain.
- 2. (a) 3-methylcyclopentadiene shows a singlet for the methyl protons in its ¹H NMR spectroscopy — explain.
 - (b) How would you distinguish between intra and intermolecular hydrogen bonding on the basis of PMR spectroscopy?
 - (c) The uncertainty in the NMR frequency of a compound in liquid state (relaxation time = 10 s) is 0.1 Hz. What is the uncertainty in the frequency (in Hz) of same compound in solid state (relaxation time = 10^{-5} s). 2

- (d) An organic compound having molecular formula C₁₅H₁₄O exhibited the following ¹H and ¹³C NMR spectral data:
 ¹H NMR: δ 2.4 (6H, s), 7.2 (4H, d, J = 8 Hz), 7.7 (4H, d, J = 8Hz).
 ¹³C NMR: δ 21.0, 129.0, 130.0, 136.0, 141.0, 190.0 Determine the structure of the compound and assign these δ values to various hydrogen and carbon atoms of the compound.
- 3. (a) A compound having molecular formula C₉H₁₈O showed only one singlet in its ¹H NMR spectrum but three ¹³C NMR signals in the intensity ratio 1:2:6.

 Determine the structure of the compound.
 - (b) A compound having molecular formula C₄H₆O showed the following signals in ¹H NMR data. δ6.20 (1H), δ6.0 (1H), δ5.8 (1H), δ2.2 (3H) Determine the structure of the compound and assign these δ values to various hydrogen of the compound.
 - (c) The ¹H NMR spectrum of A_3X exhibits lines at $\delta = 4.1$ and 4.3 ppm (for A type protons) and $\delta = 2.1$, 2.3, 2.5 and 2.7 ppm (for X type protons), measured from TMS with an instrument operating at 300 MHz. What are the chemical shift (in ppm) of A and X protons and coupling constant (in Hz)?
 - (d) How a complex spectrum is simplified by using high field FT-NMR spectroscopy?
 - (e) Distinguish the following compounds using PMR spectroscopy?

- 4. (a) What are the advantages of Fourier Transform (FT-NMR) technique over CW-NMR technique? 3
 - (b) Give the most plausible structure of the C₄H₈0 isomer with the following ¹H NMR data: δ1.84 (2H), δ3.73 (4H)

Determine the structure of the compound and assign these δ values to various hydrogens of the compound.

- (c) What is spin decoupling in NMR spectroscopy?

 How it is carried out? Illustrate the phenomenon with pure ethanol.

 4
- (d) Can ¹H NMR spectroscopy distinguish between enantiomeric pair?
- (e) Calculate the $\delta_{\rm C}$ values of the carbon atoms marked with asterisk of the following pairs of isomeric compounds and show how they can be distinguished from each other.

(i)
$$H_3C^*$$
— C^* — CH_2 — CH_2 — CH_3 and CH_3

$$^{\text{H}_{3}\text{C}}$$
 $^{\text{H}_{3}\text{C}}$
 $^{\text{C}}$
 $^{\text{C}}$

Additive parameters in ppm: base value: -2.5; α , β and γ -effects have their usual values; δ-effect: $+0.3,1^{\circ}(4^{\circ})$: -3.4; $4^{\circ}(1^{\circ})$: -1.5; $4^{\circ}(2^{\circ})$: -8.4; 2°(4°): -7.2;1°(3°):-1.1; 3°(3°):-9.5; 3°(2°); -3.7]

[Additive parameters in ppm : α : +10.6, β : +7.2; $\gamma: -1.5, \alpha: -7.9, \beta: -1.8, \gamma: -1.5, Z(cis)$ correction: -1.1, E (trans) correction: 0, Two alkyl substituent at Cl(two Ca): -4.8; Base value 123.3 ppm]

- (a) What do you understand by Nitrogen rule in mass spectrum?
 - (b) What do you mean by the base peak and the molecular ion peak?
 - (c) What is typical in the mass spectrum of a compound containing (i) one bromine atom (ii) one chlorine atom?
 - (d) Give the mass spectral fragmentation 1-phenylethanol.
 - (e) What metastable peaks? Describe the importance of it? 2
 - What is the importance of HRMS?

- (g) Which of the following molecule gives most intense molecular ion peak?
 - (i) 3,3-dimethyl hexane (ii) tert-Butanol (iii) anthracene (iv) 3-methylcyclohexene.

Group-B The Tanadata To

- 6. (a) How would you distinguish between the following pairs of isomeric compounds from their mass spectral 2×4 fragmentations? Answer any four:
 - (i) 2-hexene and cyclohexene;
 - (ii) 3,3-dimethyl heptanes and n-heptane;

- (b) Determine the structure of the compound whose m/e values are m/e 74 (Molecular ion), 56, 43 and 31 (base peak). Justify the signals.
- (c) What is McLafferty rearrangement? Give example of it.
- 7. (a) Alkylation of Indole at C2-Occurs via migration from C3. Justify the statement with an experimental observation.

- (b) How can you carryout the synthesis of tryptamine from ortho nitrotoluene.
- (c) Write the structure of most effective synthon necessary for building non-nitrogeneous part of yohimbine. Show the possible retro-synthetic scheme for preparation of such a synthon.
- (d) Although structurally altogether different, Indole and quinine alkaloids orginate from same biogenetic precursor. Justify the statement. 3+4+4+4
- 8. (a) How can you show that all Cinchona alkaloids have the same stereochemistry at C3 and C4 and hence deduce their absolute configurations.
 - (b) Give a plausible mechanism for conversion of Morphine -> apomorphine.
 - (c) How can you establish D/E ring junction of yohimbine is trans and hence establish the absolute stereochemistry of C15 and C20 centre of such an alkaloid.
 - (d) How can you carryout the following transformations:
 - (i) Yohimbine -> Yohimbine Oxiindole;

9. (a) What is biogenesis?

strivelied and adsless the 2

- (b) Delineate the following biogenetic conversion:
 - (i) Acetyl coenzume to IPP;
 - (ii) FPP to Squalene.

4+4

- (c) How the nature, position and stereo-chemistry of -COOH group in abietic acid were established?
- 10. (a) How would you justify the participation of three molecules of ATP during the following conversion:

How much information could be procured from the above conservasion regarding the structure of abietic acid?

(c) Propose mechanism for the formation of α -terpineol and limonene from geranyl pyrophosphate (GPP). 3

(d) Explain the following conversion: