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EDITORIAL

Introduction of Optics in Physical Sciences
for better system response.

SouranasHu MukHopPADHYAY

From the early days of civilization conscious people have given their effort more
and more for introducing optics in physical explanations, behaviours, analyses

and studies, because ofthe tremendous advantages hidden in optical signal over

~ allthe other signals. These advantages are being now exploited (and explained)

in parallel processing, parailel computation, high power generation, intelligent
f_unctioning of systems, production systems, robotics, information and communi-
cationtechnologies, and many other scientific fields. Superfast operational speed
inthose areas can be achieved very successfully by proper introduction of optics.
Performances in point of view of the rem'oval of all sorts of complexities, and all,
other responses from an all-optical/opto-mechanical/opto-electronic system can
not be compared at-al with the conventional counter-parts of these operational
systems. The interactions between man, machine and optics are being strength-

ened and signified more and more to get the best responses of the systems for

. best functioning. Future world will use 'optics’ in each of its step to deal physical

systems for greater horizon.






Opto-Electronic ConductanceinZnTe Film

S. BanovoraoHyay & S.K. GHoral

Department of Physics and Techno-Physics
Vidyasagar University,
Midnapore, West Bengal 721 102. India

INTRODUCTION :

'Slow relaxation' is one of the most interesting photoelectronic effects in Semiconductors, which is
manifested by anomalously long relaxation time of photo-response at the beginning or end of
illumination. Residual Conductivity is the special case of slow relaxation, which is manifested by
the retention of relatively high conductivity for a long time after the cessation of photoative
illumination. The self evident nature of the potential practical applications like optoelectronic
memory elements, vidicons etc., and the physical nature of the phenomena involved, are the main
factors that have drawn our keen interest in slow relaxation. and residual conductivity in some
semiconductor thinfilms like ZnTe film with and without doping. In this note some relevant
parameters for three different thickness of the film and the variation of conductance with
temperature are presented.

Film Preparation and Conduction measurements :

Films of ZnTe of different thickness are deposited on glass substrates as usual, in a vacuum of the
order of 10+ pa at room temperature (298 K). For doping, the films of nearly 600 nm thickness are
deposited at a substrate temperature of 573 K.A fixed amount of dopant like PbC1, (6% W/W), BaF,
(7% W/W) and In (6% W/W) are deposited on the surface of ZnTe films, and then the films are
annealed as necessary in proper way. For all the sets the deposition rate is maintained at ~120 nm/
minute. The thicknecesses of the film are measured with a surfometer as well as by interferometry.
The photoconductance measurements at different temperatures are usually done using a cryostatic
arrangement. The conductivity measurement of ZnTe films in dark and under illumination are
carried out within the range of 140 K - 373 K temperature. A tungsten halogan lamp (600 W-230
V) fed by a constant voitage supply is used as the source of white light. The spectral response of
photoconductivity is measured with the help od an Oriel monochromator (Model No. 77250).
Relaxation of conductivity after the cessation of photoexcitation is recorded by an omniscribe strip
chart recorder (Model No. 5000). For all the conductivity and decay measurements graphite paint
(aqua-dag) is used for the ohmic contacts.

Computation of different parameters . ,

After measuring the temperature variation of dark and photo-conductance for doped ZnTe films of
~ different thicknesses we can determine the values of 9,0, +(E-E)and ¢, - (4 +E.-E) fromthe
slopes of corresponding graph plots. Here ¢, is the recombination barrier height and ¢, _is the barrier
height in dark. ¢, is termed as the barrier height. E'F and E, are respectively the Fermi level and top
ofthe valence band.
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The foilowing is the tabulation of different electrical parameters of undoped ZnTe films of different
thickness deposited at room temperature (298 K).

Sampie Thickness ¢ +(E.-E)) o0 *+E-E) ¢, +EE) 0, E.-E, 0,
t(nm) (eV) (eV) (eV) (eV) ev) (ev)
Undoped 420 0.51 032 0.13 045 0.06 0.07
ZnTefilm : '
(T=298K) 630 0.80 0.45 0.30 0.75 0.05 0.25
870 0.95 0.50 0.40 0.90 0.05 0.35
Conclusion:

From the experiment it is emphasized that mode of decay under weak and moderate illumination
intensities are different, and the decay process is very sensitive to the temperature. Experimental
results show that the recombination barrier is different from the grain-boundary drift barrier, the
height of which is assumed not to be modulated under illumination,

Acknowledgement : '
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Fig. 1 shows the variation of ¢ -(¢,,+E.-E,) with thickness (t) for undoped ZnTe film deposited at
T =298K (room temperature). Fig. 2 shows the temperature variation of dark and photoconductance
of a BaF , doped (7% W/W) ZnTe film (660 nm) deposited at 573 K.
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A New Method of Solving Werners's Fuzzy LPP

T. Hossain
Sabang College, Vidyasagar University

T.K. Pac
Deptt. of Applied Mathematics, Vidyasagar University

Abstract : An alternative method of solving the fuzzy linear programming problem of Werners is
presented here with the help of introducing effective constraints. Each fuz=y constraint is replaced by
a crisp effective constraint formed by combining the constraint and itstolerance limits with the objective
function and thereby reducing the number of crisp constraints in the equivalent nonfuz=y LPP.

1.INTRODUCTION :

Werners [2,3] considered LPP whose constraints are fuzzy with given tolerance limits. According to
him the fuzzy behaviour of the constraints also makes objective function fuzzy. Werners considered
the two optimum values of the crisp objective function corresponding to the two feasible regions
obtained by taking lower and uppertolerance limits of the constraints to form the membership function
of the fuzzy set for this fuzzy objective function. Max-min operator of Bellman and Zadeh [1] are then
used to the membership functions of both fuzzy constraints sets and fuzzy objective function set to
find the decision of the fuzzy problem. In this paper a new method of solving the same fuzzy LPP is
developed with the use of effective constraints. Corresponding to each fuzzy constraint an effective
constraintis formed with the help of the constraint itself, its tolerance limits and the objective function.
An equivalent crisp LPP is thus formed giving the same solution as given by Werners's method. As
the number of constraints and,variables in the equivalent crisp LPP of this method is less than those
in the Werners's method the optimal solution is obtained in less number of steps of simplex method
and thus reducing considerable computational time. For illustration of this method two examples are

considerd.
2. DEFINITIONS AND RESULTS OF WERNERS :

The classical crisp LPP is

Maximize z = cx

subjectto Ax<bandx2>o ' 2.1
where ¢ and x are n-vectors, b is an m-vector (unrestricted is sign) and A is an m x n matrix.
Werners[3] considered the following LPP with fuzzy constraints.

Maximise z = cx

subjectto Ax< bandx>o0 (2.2)

where "fuzzylessthan oreualto” " <" denote the fuzzified version of "<" having linguistic interpretation
as essentially smaller than or equai i.e. (Ax), is about b, or less for each ..

The fuzziness of the ith (i=1,2,............ ,m) constraint over the tolerance range [b, b, + p, ] is
characterised by the linear membership function i, (x) as
1 if (Ax), <b,
b = o *b -(A, Vp, ifb, <(AX), <b, +p,
d 0 : if (A, >b, +p,.
VUJPS 1997



According to Werners because of the fuzzy behaviour of the constraints the objective function should
also become fuzzy. To getthe membership function for this fuzzy objective Werners firstdefind mand
m+m’ as follows

m = max cx

andx 20
and
m + m’' = max cx v
subjectto (Ax), < b, +p,i=12. ... ,m
and x 2 0.
Using m and m’ the hembership function of the fuzzy objective function is deﬁnd as

1 if cx>m+m'
g, ) = (cx - m)/m’ f  m<oxsm+m'
0 if  ox<m.

The optimum solution of this fuzzy LPP is obtained by using Bellman-Zadeh's max-min operator
as follows A

max o (x) where o, (x) = min {i, (X), 1, (), Ky (X), wcovernennene. M (X))
X20.

The crisp formulation of this broblem is

Maximize o

subjectto u, (x) 2a,i=012.... ,m
0<ac<1

and X22o0.

i.e. Maximize o

subjectto cx-m'azm
(A), +p, asb,+p, i=123..... ,m . (2.3)
0<a<iandx>o.

3. Development of the proposed method.

3.1 Construction of effective constraints.

Let m and m+m’ be the maximum values of the objective function respectively for Ax < b, x > 0 and
Ax<b+p,x2o0.

The maximum profit hyperplanes of these two LPP are then cx = m and ¢cx = m + m’ and the
corresponding hyperplanes ansing fromthe ith constraint are respectively (Ax), =b and (Ax) =b.+p.

" VUJPS 1997 4



The hyperplane passing through the intersection of the hyperplanes
cx=m+ m' and (Ax), =b is
cx+ AAx), —m-m'-ib =0 (3.1.1)
and that passing through the intersection of the hyperplanes
cx=mand (Ax), =b +p, is
cx+ A(Ax), -m—b, +p =0. : (3.12)

It is easily seen that these two hyperplanes (3.1.1) and (3.1 2) become identical when A = A'= m'/p..
Hence the hyperplane passing through both

cx-m-m'=0=(Ax), —b, andcx-m=0=(Ax), -b -p is
pex+m' (Ax) =pm+pm'+mb . (3.1.3)

The hyperplane (3.1.3) may be called as the ith effective hyperplane. Noting the fact that the feasible
region corresponding to the effective constraints must contain the original feasible region, the ith
effective constraint is taken as

p,ex+m' (Ax), <pm+pm'+mb. (3.1.4)
3.2 Equivalent crisp LPP :

Foreachi=12,........... , m replacing the fuzzy constraint (Ax), < b, of the LPP (2.2) by the effective
constraint (3.1.4) the equivalent crisp LPP of the fuzzy LPP (2.2) is obtained as

Maximize z = cx
subject to p cx + m'(Ax), < p'im +pm+mb i=12....... ,m (3.2.1)
and x 2 o.

Comparing the crisp LPP (2.3) and (3.2.1) itis seen that the number of constraints in (2.3) is always
more than the number of constraints in (3.2.1) by one. Also the number of variables in (2.3) is one
more than that in (3.2.1). Hence in the simplex method the LPP (3.2.1) needs less computations
that needed for the LPP (2.3).

4. NUMERICAL ILLUSTRATION
To illustrate the method two examples are considered one of which is due to Werners [4,5].
Example 4.1

Werners [4,5] considered the fuzzy LP model

Maximize z = 2x + X,

subject to X, <3 (4.1.1)
X, +x, <4
0.5x, +x, £3

and X, X, >0

with "tolerance intervales” of the fuzzy constraints as p, =6, p, = 4, p, = 2.

5 VUJPS 1997



To get m and m+m’ we are to solve two crisp LP problems

Maximize z = 2x, + X,

subject to X, <3 (4.1.2)
X, +X, <4
0.5x, +x,<3
and X, X, 20
and
Maximize z = 2x, +X, .
subject to X, <9 (4.1.3)
X, +x, <8
0.5x, +x, <35
and X, X, 20.
The optimal solution of the LPP (4.1.2)isx, =3,x,=1,z _ =7 and
that of the LPP (4.1.3)isx, =8x,=0,z__=16.
~.m=7andm+m'=16ie.m=7and m' = 9.
Using Werners's method the equivalent crisp LPP is
Maximize z = «
subject to 2x, +x, —-%ax7 4.14)

X, +Ba<9
X, +X, +40 <8
0.5x, +x2+2as5

and X, X,, 02 0.

This LPP contains 4 constrainsts in 3 variables and apblying simplex method the optimal solution .,
=584, x_=0.05 and o = 0.53 is obtained in 4 iterations (each table containing 8 columns).

Using the method of effective constriants the equivalent crisp LPP is
~ Maximize z = 2x, + x,
subject to 7x, +2x, <41 (4.1.5)
17x, +13x,<100
8.5x, +11x,< 39
and X, . X, 20

This LPP has 3 constnants in 2 variables and simplex method needs only 3 iterations (each containing
only 5 columns to yield the optimal solution x = 5.84, x,=0052z = 11.737.

VUJPS 1997 6



Example 4.2

in the standared form (2.2) of the fuzzy LPP with only fuzzy constraints ‘b’ is taken to be unrestricted
in sign. To discuss this situation containing some components of ‘b’ positive and some negative the

following LP model is considered.

Maximize z = x + X, - 2X,

-8x, + 2x,-3x, £-10 4.2.1)
2x, - 2x,+3x,< 10
2,-x, <4
X, -X, £2
Sx, —2x, + 3x, < 20
=X, =X, * X, £-9
and X, X, X, >0.

The tolerance intervals of the fuzzy constraints are p, =2,p, =5, p,=3,p, =10, p, = 6 and p, =3.
Here it is easily seen-thatm =6 and m' = 8.

The equivalent crisp LPP of the fussy LPP (4.2.1) in Werners's method is
Maximize z=a
subject to X, +X,-2x,-8026 4.2.2)
8x, -2, +3x,-2028
2x, —2x, + 3, + S < 15
2, —x, +30<7
X, - X, +10a<12
Sx, -2, +3x, +60<26
X, +X, =X, -3a22
X, Xy X5, 0020
To solve the LPP (4.2.2) simp'lex method requires 6 tables each containing 14 columns. The optimal
solution is x, = 5.95,x, =2.96, x, = 0, a = 0.36.
The equivalent crisp LPP obtained by the present method is
Maximize z = X, + X, = 2%,
subject to 31x, =9+ 14x, 226 (4.2.3)
21x, - 11x,+14x, <150
3x, +19x,—-14x, <74
9x, +x,~10x, <78
23x, - 5x, + 6x, <122
— 35X, = 5X, +2X, <2
and X X, X, 20

1 2! 73
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The same solution x, = 5.95,x,=2.96.x, =0and z = 8.903 is obtained here in only 4 tables of simplex
method each table containing only 10 columns.

ACKNOWLEDGEMENTS:
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Hall Effects on Hydromagnetic Flow in a Horizontal
Channel in the Presence of Inclined Magnetic Field

G. Docra, A. K. KancH ano R. N. Jana

Department of Applied Mathematics, Vidyasagar University
Midnapore - 721 102, West Bengal, India.

Hall effects on the hydromagnetic flow of a viscous incompressible conducting fluid between two
horizontal perfectly conducting plates in the presence of a uniform magnetic field which is inclined
with the positive direction of vertical axis is considered. it is found that the primary velocity
increases while the secondary velocity decreases with increase in angle of inclination of the
applied magnetic field. It is also found that for large Hartmann number, there exists a thin boundary
layer near the plates. The thickness of this layer increases with increase in angie of inclination:

of the magnetic field.

1.INTRODUCTION

Itis well known (see cowling [1]) that the Hall currents become important when the strength of the
magnetic field is very strong. Hall effects on the hydromagnetic flow of a viscous incomperssible liquid
through paraliel plates channel have been studied by Sato [2], Yamanishi [3], Sherman and Sutton
[4]. In ali these studies they have considered the transverse applied magnetic field. The present
investigation, isdeveloped to the study ofthe effects of Hall current on flow when the applied magnetic
fieid is inclined at an angle 8 with the positive direction of the vertical axis. An exact solution of the
governing equation ofthe fully developed flowis obtained. It is found that for large values of Hartmann
number, there exists a thin boundary layer near the plates which increases with increase in angie of
inclination (8) of the applied magnetic field. it is also found that the boundary layer thickness is
independent ofthe Hall parameter m.

2. Mathematical formulation and its sciution

Consider the fully developed steady flow of an electrically conducting viscous incompressible fluid
between two infinite long perfectly conducting plates separeted by a distance 2 L. The origin of the
cartesian coordinate system is taken at the centrairegion of the channel, x-axis in the direction of flow
and z-axis perpendicular to it. A uniform magnetic field H, is applied along z-axis which is inclimed
at an angle 8 with the positive direction of z-axis. For fully deveoped flow all physical quantities, except
pressure, will be function of z-only. Since Hall currents interacts with the magnetic field to generate
a transverse motion of the fluid, the fiow and the magnetic field can be taken as (u, v, o) and (H, +H,
sin 8, H,, H_cos 6) respectively. The equations of momentum and the magnetic induction equations,
taking Hall current into account, can be written as

d d2u dH,
+ u_H_cos®
0% dz? dz

9 VUJPS 1997



dv dH

0= +u H, cost —
dz? . dz
op dH dH
=— — —-H, — —(H, +H, cos8) —
oz dz dz
d*H, d?H, du
- -0, = o, H, cos
dz? dz? dz
dH, d*H, _ :
- +trT, = opu, H, cost
dz? dz? dz

@

&)

@

®

where | is the coefficient of viscosity, u_the magnetic permeability, p the fluid density, o the fluid

conductivity, o_the cyclotron frequency and t, the elctron collision time.
The boundary conditions for the velocity and the magnetic fields are respectively

u=sv=0 at y==+L

dH, dH,
= —— =0aty+L.
dz dz

Introducing non-dimensionai vanables

n = ylk,u =ulbv,v =vlv h =H/lop vH,
hy = H/o M v H,.
equations (1), (2), (4) and (6) beccome
d?y, ' dH,
+ M2 cos§ —— =-R
dn? dn
dv, dh,
+M2cosh — =0
dn? dn
d%h, dzh, du,
+mcosg — +cosd — =0,
dn? ay’ dn
dzh, dzh, av,
— m cost +costd — =0,
dn? dn® dn

where M = ( o H2 Lpv )”2, the Hartmann nurher, m = @ 1 _the

: ap
Hall parameterandR= — ( - — )the non-dimensional pressure gradient.

pr ax
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The boundary conditions (6) become

dh, dh
u =v. =0 and = =0 atn==1. (12)

dn dn

The solution of the equations (8) — (11) subject to the boundary conditons (12) are

R(a—iB)? cosh (o +iB)n
F) = ——— [1- i (19
(a2+p?)? cosh (o + i)
Rcosf (a—if)? (1 +im cose) sinh(c + iB)n
h(m = [ - ) i - —11], (14)
(o + B?) (1 + m2cos?@) (o+iB) cosh(o +iP)
where
F(n)=u, +iv, and h(n) =h_+ih, (15)
1 M2 cos?0 12 12
= —_— —_— 2
* 2 [ 1 + m2cos? {( trm cosze) . } ]
_ 1 M? cos?0 _— 12 12 (16)
e 5 [ (emeesn) i} ]

On separating real and imaginary parts, we can readily find x and y-components of velocity and
magnetic field from equations (13) and (14).

We now discuss a few particular cases of interest.
Case — | : When M? << 1 and m?<<1,
Neglecting square and higher powers of M2 and m2in (13) and (14) and on using (15), we get

u, 1 5 1 1
—_= — (1 —nz) + M2 cos?0 (— — + n- — n“) R (7
R 2 24 4 24
v, 5 1 1
— = m M2 cos? (— — + — N2 — n‘) + (18)
R 24 4 24
h, o [( 1 s 1 ) M?cos?6 ( 1 6 s 5 ) ] (1
— =CO0S —nd - + — — -+ — + ,
R 3 n 2 N 12 10 e 2 n )
h 1 1 1 1 -
-~ = mcos¥ [( —_ - — n) + — M2 cosze( —_— n5—n3+%n)+—-]. (20)
R 3 2 6 10

VUJPS 1997
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The above expressions show that for weak applied magnetic field, the velocity and the magnetic field
in the x-direction is independent of Hall parameter m. It is seen that in the absence of magnetic field,
the problem is reduced to the classical hydrodynamic flow through a straight channel under constant
pressure gradientand we have.

R

u=

— (1-m?, v, =0 (21)
2
Case - Il. When M2 >> 1 and m2 << 1,

When M2 is large and m is small in order of magnitude, the boundary layer type flow is expected.
Writing { = 1 —n, we get

R ~MCcos @
u = 1-e ) (22
M2cos26
R [ 9(1 ~M{ cosb ) LM o -MZ{ cos6 ] 23
V.= — mcos| -e +=Mmcos?(e ,
' MZcos?8 z
R 1 -M{cos®
h, = + e . 24
X M2cose [ Mcos6 ] @
mR [ 1 ~M{ cosb —M-';cose]
h, = vE > Ce + e . (25)

The above equations (22) and (23) show the existance of a thin boundary layer of order O(1/Mcos8)
in the vicinity of the plates. It is seen that the thickness of the boundary layer is independent of Hall
parameter m. Itis also seen that the thickness of the boundary layer increases with increase in 6 and
becomes infinite when 6 = 80°. The expression (22) and (24) show that both the velocity and the
magnetic field in the x-direction are independent of Hall parameter m. Inthe centrai core given by { >1/
M cos9 about the vertical axis of the channel, the velocity and the magnetic field become

= RMZcos?9, v, =—m R/M?cos?, (26)
R ho= 0 :
= =0. 2
X Mzcosy Y @n

Itis evident from the above equations (26) and (27) that in the central region the secondary velocity
is weak in comparision to the primary flow and the induced megnetic field h,=0.

VUJPS 1997 12



3.Results and Discussions

The primary and secondary velocity profiles have been plotted against nj for farious values of M2, 6 and
min figures 1 and 2 respectively. It is seen that for fixed values of M? and m, the primary velocity
increases while secondary velocity decreases with increase in 0. It is also seen that both the primary
and secondary velocity increase with increase in Hall parameter m when M2 and 9 are fixed. Further.
for fixed values of m and 8,at any point both are velocity components decrease with increase in M2,
as expected, since the magnetic field exerts a retarding influence on the flow.

We have presented the non-dimensional magnetic field components h, and h, againstn for M? =5
and for dlrrerentvalues of @and min figure 3. Itis seen *hat both h, and h decrease with increase in
m for fixed values of 8 and M2. ltis also seen that for fixed values ofM2 and m, both h, and h, increase
for h, <45° and decrease for > 45°.

The non-dimensional shear - stress due to primary and the secondary flow at the plate n =+ 1are
respectively.

du, R(a sinh 2 a—f sin 2 ()
T = ) n==x1-=1 , (28)
) dn (a2+B2) (cosh 2 3 + cos 2 B)
and
v, R(B sinh 2 o - o sin 2 B)
T = ) n=x1 =% , (29)
Y dn (a?+B2?) (cosh 2 o + cos 2 B3)

The non-demensional shear stresses 1, and 1, at the piate n = 1 have been plotted against Hall
parameter mfor various values of and for M?= 10in figure 4. Itis observed that both T, and T, increase
with increase in either m or 8. On using (186), itis found form (28) and (29) that in the absence of Hall
currents {(m = 0), the non-dimensional shear stress at plate = 1 in the x and y - directions are
respectively.

tanh (M cos8)
T =t —— and 1 =0 (30)

M cos6

Above relations show that in the absence of Hall current (m = 0), the shear stress due to secondary
flow vanishes, as expected, at both the plates while that due to the primary flow vanishes neither at
the upper plate (n = 1) nor at the lower (n =—-1)
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On a Type of Semi-Symmetric Metric Connection
on a Riemannian Manifold

U.C.DeAnoB.K.De
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Kalyani, - 741 235, West Bengal, India.

Key words : Semi-symmetric metric connection, Weyl conformal curvature tensor, conformally
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1. INTRODUCTION:

Fridemann and Schouten [a] introduced semi-symmetric connection. Yano [b] synthesized the notion
of semi-symmetric connection. He also proves that a Riemannian manifold admits a semi-symmetric
metric connection of zero curvature tensorif and only if itis conformally flat [b]. The object of this paper
is to study a Riemannian manifold which admits a semi-symmetric metric connection with a certain
form of curvature tensor.

Consider an n-dimensionai orientable Riemannian manifold with a metric tensor g and its Levi-civita
connection V . We consider allgeometric objects on M be sufficiently smooth. Denaote arbitrary vector
fields on M by X,Y and Z etc. A linear connection V on M is said to be a semi-symmetric metnc
connection [b] if there exists a 1-form & such that the torsion tensor T is given by

TX,Y) =t (X -n(X)Y M
andVg=0 '

For such a metric connectionn [b]
VY=V Y+r(Y)X-g(XY)P @

where P is a vector field such that g(P.X) = n(X). We denote the curvature tensor, Riccitensor of type
(0,2), the scalar curvature and the Weyl conformal curvature tensor of M with respectto Vby R, S, r,
C respectively. A bar over them refers to V . We know that [b]

R(XNZ=RXYNZ-afY.2)X+a(X,2) Y

-g(Y.Z) AX+g(X.2) AY ) &)
where

a(X,Y) = (V,m) (V) = (X) (Y) + = T (P) g(X,Y) @
and ’

AX=V P-m(X)P + '; (P)X : )
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In this connection we recall that

n
SX,Y) = T R(XV,VY)
i=1

where {V}is an orthonormal basis of the tangent space at each point of the manifold M.

CXYZ = RXYNZ+AY,DX-A(X2DY
+ g(Y,Z)LX"g(X,Z)LY,

1 r
where A(X,Y) == —— SXY)+ —m—— g(XY)
n-2) 2(n-1)(n-2)

and g(LX,Y) = A(XY)

1. in this section we deal with the implications of the prescription

R (X,V)Z=9R(X,V)Z,
where ¢ is a real function on M.

Lemma 1. IfR (X,Y)Z = $R(X,Y)Z, ¢ a real function on M, then
(1-0)S (XY) = (8 =2) aX.¥) +a g (X V)
(1-9r=2(n-1)divP + (n-1) (n-2) n(P)

a (X)) =(0-1)MX)Y)

where a is the trace of A and n>3.

Proof . From (3) we can write
gR(XYVZ,W  =g[R(X,Y)ZW -g [a(Y,Z) X, W]
+ glo(X,2) Y. W] - g [g(Y.Z) AX, W]
+glg(X,2)AY,W]
Putting X = Win (1.4) and from the given hypothesis we have
0g[RXYNZ X]  =gR(XX,Y)ZX]-g[a(Y,Z2) X,X]
+gla(X,2) Y X] - g {a(Y.Z) AX X]
+g[g(X,2)AY X]
Let us take X =V, then (1.5) becomes
29 [R(V,NZ V] =g[R(V,Y)ZV] - g [a(Y.2) V,V]
+ gla(V,2) Y.V] - g [9(Y.2) AV, V]
+ glatv,2)AY,V]

15

®

(1.1)
12
(1.3)

(1.4)

(1.5)

(1.6)
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From (1.6) we get
0S(Y,.2) = S(¥,2) - n a(Y,2) + 2 o(Y.Z) — ag(¥,2)
ie. (1-¢) S(Y.2) = (n-2) afY,2) +ag(Y.2)
This completes the proof of (1.1)
Using the relation (4) and (5) we get from (1.7)
(1-90) S(X.Y) =(n-2)[g(Y, V,P)-g(X,P)g(Y,P)

n-2

+ = g(P.P) g(X.Y)] + (divP ~ ©(P)) g(XY)

2
Putting X = Y= V. in (1.8) we get
(1-0)r=2(n-1)divP + (n-1) (n-2) n(P)
This completes the proof of (1.2)
Putting X =Y =V, in (1.1) gives
(-¢r=(m-2)a+an
where a is the trace of A.
Using (1.1) and (1.9) in (7) we get

1 1

AX,Y) = [ (-2) a(X.Y) +ag (XV)}]
n-2 1-¢

{(n-2)a+an}

1-¢ :

+ g(x,y)
2(n-1)(n-2)

Now from (1.10) we have
a(X,Y)=(o-1) AXY)

This completes the proof of (1.3)
Now using (1.3) in (3) we get

R(XYNZ =RXY)Z=(0-1)MY.DX=(0-1) MX,2)Y
-g(Y.2) AX +g(X.2) AY
= R(X,Y)Z + 0R(X,Y)Z - 0R(X,Y) Z - o A(Y,2)X

+AY.2) X+ AX.D)Y - MX,2)Y —g(Y,.2)AX + g(X,2)AY

VUJPS 1997
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Nowg(g(Y.2) AXW) =g(Y,Z2) g(AX.W)

=g9(Y.2) (ZW)

=9g(Y,2) (6—1) A(X,W), [from (1.3)]

=(¢0-1g(¥.2) glXW)

=g((9-1)g(Y.2) LXW ’
~g9(Y,.2) AX=(0-1) g(¥,2) LX (1.12)
Similarly g(X,Z) AY = (6— 1) g(X,Z)LY (13)
Using (1.12) and (1.13) in (1.11) it follows that

®-1NCXY)Z=0

Thus we can state the following theorem :

Theorem If a Riemannian manifold M of demension n > 3 admits a semi-symmetric metric conrection
_such that R =¢ R, ¢ is a real function on M, then the foliowing relation holds

(1-9CXY)Z=0
if ¢ = 0, then from the above theorem we can state the following corollary.

Corollary If a Riemannian manifold admits a semi-symmetric metric connection whose curvature
tensor vanishes, then the maniflod is contormally flat.

The above corollary has been Proved by K. Yano [b] in another way.
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Evaluation of second exponential integral and its
applications to thermal analysis

W.G. Dew
Chemistry Department, T.S. Paul Manipur Women's College
Mongsangei, Imphal-795008, Manipur

Abstract : In the present paper a precise method for evalution of second exponential integral is
presented. The suitability of the method is tested by evaluating an untegral which frequently occurs in
thermal analysis problems. The method has aiso been checked by fitting experimental differential
thermal analysis curves.

Key Words : Second exponential integral, differential thermal analysis, activation energy, order
of kinetics, pre-exponential factor.

1.INTRODUCTION :

Nonisothermal thermoanalytical techniques are widely used in the analysis of different types of
reactions such as chemical reactions and diffusion controlied reactions etc. Nonisothermal analysis
of reactions normally involve the heating of reactants from ambient temperature to high temperature
to enable reactants toundergo some transformation. By means of such analysisa group of phenomena
namelythermogravimetry (TG), differential thermai analysis (DTA) and differential scanning calorimetry
(DSC) can be studied. Mathematical modelling of these processes leads of their fuller understanding
thereby checking the validity of assumptions and deducting quantitative conclusions from apparent
kinetic parameters. These techniques ' have been widely used for identification of many types of
matenals, the study of properties like thermal stability and the investigation of various processes of
practical importance. But a major limitation of mathematical modelling non-isothermal techniques
arises due to complication in the mathematical analysis of the data due to the fact that the integral
IoTexp(-E/RT')dT' (E=activationenergy, R=universaigas constant, Tthe temperature in Kelvin occuring
in the analysis has no closed from solution. This integral can be written in terms of the second
exponential* E_(u). In the present article a method of evaluation of second exponential integral is
presented. The accuracy of the present method is tested by evaluating the integral IoTexp(-E/RT')dt'
for various values of u=E/RT and comparing with the results of a recent paper by Quanyin and Sus.
Finally a further check of present method is done by fitting experimental DTA curves®’ of the
dehydration of Ni[mpipz) ,(NCS),] and decomposition of Ca (DMP),(MCA),, where mpipz, DMP and
MCA respectively stand for N-methyipiperazine, dimethyipiperazine and monochloroacetato.

2. Theory
The second exponential integral is defined as*
E,(u)=, (14)exp(-ut)dt )]
A continued fraction developmve‘nt for E_(u) is given by @
1 2 1 3 2
E(w=exp(-w)(— — — — — ... ) [v))

u+ 1+ u+ 1+ u+
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b b

1 2

wherea + — — ... is the compact form of the continued fraction®
a+ ar
.
a, +
aZ * b2

a .. o
The present method has the advantage that it convergres rapidly for u>1 and is highly precise. For
u<1,E,(u) is evaluated by using the expression

5
E_(u)=exp(-u) —ulnu—-ZXa u* ‘ 3
R=0
where the coefflclents a s are given by
a, =0.57721566
a,=0.99999193
a,=-0.24991055
a,=0.05519968
a, =—0.00976004
a =0.00107857

Nowtheintegral | exp(—E/RT)dT occuringinthe mathematical modelling of the non-isothermal thermal
analysis can be ®xpressed as

Im =JZexp(—E/RT')dT'
=(E/R) f; exp(-u)/udu’  (with u'=E/RT’)

=g

=(E/R) | _exp(-tu)tidtu  (u=tu)
(E/RU)E,(u) (from(1) @

3. Resultsanddiscussions

The values ofthe second exponential integral computed by the presenttechnique arein excellent
agreement with those reported in Abramowitz and Stegun*. Aill computations have been carried out
by using double precission arithmatic. For a further check of the present method the values of the
integral ] exp (-E/RT") dT" evaluated by using the second exponential integrai have been compared
(Table 1§ with the values of the integral evaluated numerically. The numerical evaluation have been
carried outby using 32 pointGauss Legendre Quadrature method*'°. The range (0,T) have been divided
into suitabie number of subintervals. We see that the values of the integral computed by using the
present method of the evaluation of the second exponentiai integral for all practical purposes are
identical with those of numerical evaluation for allvalues of u. Onthe other handitis evidentfrom Table
1thatthe method never completely agrees with the numerical resuit. Actually Quanyin and Su method

fails for u<S.
Further in order to check the validity of the present technique an attempt has been made to fit the
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experimental DTA curves of the dehydration reaction Ni[(mpipz) ,(NCS) . 2H,0 J—=Ni[(mpipz) 2(NCS)2
and the decomposition reaction Cd{(DMP) (MCA),] — Cd[(DMP)(MCA) ]. Foliowing Luo'* for a DTA
curve the expression for the temperature deviation AT from the horizontal baseline is given by

AT=Aexp(-ERT) [1+(n-1)(A0) [, _exp(-E/RT)AT]~" (nz1) ©)
T=Aexp(-E/RT) exp[{(A/¢) " exp(-E/RT)dT] (n=1) @)

where A, the pre-exponential factor, n, the order of kinetics, ¢, thelinear heating rate, T the starting
tempertaure and T, and temperature at time t. At the peak temperature T=T_, the deflection of DTA

curve is maximum so that

[dATAT],_, =0 : @
From equations (6) and (7) one can write for n=1

OERT 2=Aexp(-ERT ) " ®)
Similarly for nz1one gets

1+(n=1) (Ao " To exp(-E/RT)dT = (nART_ */6E) exp(-E/RT ) ©

Theintegral occuringin equations (5), (6) and (9) can be expressed in terms ofthe second exponential
integral E,(u) (Equation (4)). Itis chosen to define by AT , the experomentai DTA results given in a
graphical form from which one can use a certain number of points AT fori=1,2,....N. The process s
initiated with the arbitrary values of E and n. The pre-exponential factorA can be computed either from
equation (8) (n=1) offrom equation (9) (n=1) usingthe presentvaluesof T _,E,T and n. The theoretical
curve AT, is computed from equation (5) (n#1) orfrom (6) (n=1) and the mean devnahon S, and rootmean‘
square deVIatlon S, are caiculated as

S, = (1/N)Z[AT, - AT ] ‘ 10)
S,= {(1/N)Z[AT - AT 132 (11)

$, =S, = 0 will mean a complete coincidence of the theoretical and experimental DTA curves. An
attempt has been made to find out the values of E and n, that minimize S, and S,. For a given value
ofn, S, increases for decrease in values of Eandviceversa.If S, is posmve Eis mcreased by adding
a certaln amount AE to it. The process is repeated.until S, changes sign. Now half of the previous
amount namely 0.5AE is subtracted from E and this process is repeated, namely the correction is
halved in each step and its sign is determined by the sign of S.. Since S is the sum of positive and
negative differences it's absolute value can be reduced to any desired extent by changing E,
independent ofthe value of n. Thus the process mightbe continued down to an arbitrarilysmall absolute
value of S, untilthe chage in E is small enough. The dependence on the order of kinetics n has been
checked by S,. The value of n has been varied in small steps in order to reduce S, and in each step
E is recalculated such that S, gets arbitrarily small. n is changed in acertain direction as long as S,
decreases. If S_increases the direction of the change in nis altered. The process is terminated when
the change in n is small enough. This method is applied to abtain the kinetic parameters E,A and n
ofthe DTA peaks corresponding to the chemical reactions mentioned above (Tabie 2). The vaiues of
activation energies so determined are in fair agreement with those obtained®” by using Borchardt and

Daniels '? method.
4.Conclusions
in the present paper a numerical technique has been developed for the computation of the secand

VUJPS 1997 - 20



exponential integral E (u) forTany u>Q. The suitability of the present method has been assessed by
the evaluation of theintegral | exp (-E/RT") dT required in the analysis of the TG and DTA data. The
technique has been tested fufther by developing a computer code for curve fitting and applying it to
analyse some experimental DTA curves.
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Quanyin and Su®

63321.801
1324.366

0.0

2.7045
16312
6.5978(-1)
2.4022(-1)
8.4313(-2)
2.9189(-2)
1.0059(-2)
3.4649(-3)
1.7313(=5)
9.1685(-8)
5.0731(-10)
2.3171(-12)
6.0365(-17)
1.8482(-21)
5.6359(~26)
2.7559(-30)

Table 1. Values of the integral || exp(-E/RT) dT'
u=E/RT Values of the integral J'o exp (-E/RT) dT"
Numerical Present

0.5 326.6439 326.6439

1 148.4955 148.4955

2 37.5343 37.5343

3 10.6419 106419

4 3.1982 3.1982

5 9.9647(-1)" 9.9647(-1)

6 3.1826(-1) 3.1826(-1)

7 1.0351(-1) 1.0351(-1)

8 3.4138(-2) 3.4138(-2)

9 1.1384(-2) 1.1384(-2)

10 3.8302(-3) 3.8302(-3)

15 1.8108(-5) 1.8108(-5)

20 9.4048(-8) 9.4048(-8)

25 5.1569(-10) 5.1569(-10)

30 2.3437(-12) 2.3437(-12)

40 6.0757(-17) 6.0757(-17)

50 1.8559(-21) 1.8559(-21)

60 5.6522(-26) 5.6522(-26)

70 2.7618(-30) 2.7618(-30)
CA(—B) donotes Ax10-8

Daniels method

f . s L .
Table 2. Delermination of the kinetic parameters of some experimental DTA curves®’ Q
Curvefitting method. E_stands forthe activation energy calulated by using Borchardt and

Chemical reactions E n A 80
studied (KJmole ) ) (KJmole-")
Ni(mpipz),(NCS),].2H,0 :
— Ni(mpipz),(NCS),] 143.9 15 7.83(16)
Ca[(DMP) _(MCA),
L_) Ca[(DMP)(MCA),) 35.0 1.0 82.35
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