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EDITORIAL 

Introduction of Optics in Physical Sciences 
for better system response. 

o SOURANGSHU ~UKHOPAOHYAY 

From the earlydaysof civilization consciouspeoplehavegiventheir effort more 

and more for introducing opticsin physical explanations, behaviours, analyses 

andstudies,becauseofthe tremendous advantages hiddenin opticalsignalover 

all the other signals.These advantages arebeingnowexploited (and explained) 

in parallel processing. parallel computation, high power generation,intelligent 

functioningof systems, production systems, robotics, information and communi­

cationtechnologies,andmanyotherscientificfields.Superfastoperationalspeed 

inthose areascan beachieved verysuccessfullybyproperintroduction of optics. 

Performances in pointof viewof the removal of all sortsof complexities, and all, 

other responsesfrom anall-optical/opto-mechanical/opto-electronic systemcan 

not be compared at-al withthe conventional counter-parts of these operational 

systems.The interactions between man,machineandopticsarebeingstrength­

ened and signified more and moreto get the best responses of the systems for 

best functioning.Futureworldwill use 'optics' in each of its step to deal physical 

systems for greater horizon. 

,~ 

-0­



•
 

II 



Opto-Electronic Conductance in ZnTe Film 

S. BANOYOPAOHYAY & S.K. GHOAAI 

Department ofPhysics and Techno-Physics
 
Vidyasagar University,
 

Midnapore, WestBengal 721 102. India
 

INTRODUCTION: 

'Slow relaxation' is one of the most interesting photoelectronic effects in Semiconductors, which is 
manifested by anomalously long relaxation time of photo-response at the beginning or end of 
illumination. Residual Conductivity is the special case of slow relaxation, which is manifested by 
the retention of relatively high conductivity for a long time after the cessation of photoative 
illumination. The self evident nature of the potential practical applications like optoelectronic 
memory elements, vidicons etc., and the physical nature ofthe phenomena involved, are the main 
factors that have drawn our keen interest in slow relaxation and residual conductivity in some 
semiconductor thinfilms like ZnTe film with and without doping. In this note some relevant 
parameters for three different thickness of the film and the variation of conductance with 
temperature are presented. 

Film Preparation and Conduction measurements : 

Films of ZnTe of different thickness are deposited on glass substrates as usual, in a vacuum of the 
order of 10-4 pa at room temperature (298 K). For doping, the films of nearly 600 nm thickness are 
deposited at a substrate temperature of 573 K.A fixed amount of dopant like PbC1 (6% WIW), BaF2

2 
(7% WIW) and In (6% WIW) are deposited on the surface of ZnTe films, and then the films are 
annealed as necessary in proper way. For all the sets the deposition rate is maintained at -120 nm/ 
minute. The thicknecesses of the film are measured with a surfometer as well as by interferometry. 
The photoconductance measurements at different temperatures are usually done using a cryostatic 
arrangement. The conductivity measurement of ZnTe films in dark and under illumination are 
carried out within the range of 140 K - 373 K temperature. A tungsten halogan lamp (600 W-230 
V) fed by a constant voltage supply is used as the source of white light. The spectral response of 
photoconductivity is measured with the help od an Oriel monochromator (Model No. 77250). 
Relaxation of conductivity after the cessation of photoexcitation is recorded by an omniscribe strip 
chart recorder (Model No. 5000). For all the conductivity and decay measurements graphite paint 
(aqua-dag) is used for the ohmic contacts. 

Computation of different parameters : 

After measuring the temperature variation of dark and photo-conductance for doped ZnTe films of 
different thicknesses we can determine the values of $" $d+(EF-E) and $d - ($ '0+EF- E) from the 
slopes of corresponding graph plots. Here CP, is the recombination barrier height and 4>'0 is the barrier 
height in dark. $d is termed as the barrier height. t Fand E are respectively the Fermi level and top v 
ofthe valence band. 
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The following is the tabulation of different electrical parameters of undoped ZnTe films of different 
thickness deposited at room temperature (298 K). 

Sample Thickness l1>d+(EF-E) lild-(C;> ro+EF-EV) <b +(E -E ) EF-E 11> 
"0 F V l1>d v ' ro 

t(nm) (eV) (eV) (eV) (eV) (eV) (eV) 

Undoped 420 0.51 0.32 0.13 0.45 0.06 0.07
 
ZnTefilm
 

(Ts=298K) 630 0.80 0.45 0.30 0.75 0.05 0.25 

870 0.95 0.50 0.40 0.90 0.05 0.35 

Conclusion: 

From the experiment it is emphasized that mode of decay under weak and moderate illumination 
intensities are different, and the decay process is very sensitive to the temperature. Experimental 
results show that the recombination barrier is different from the grain-boundary drift barrier, the 
height of which is assumed not to be modulated under illumination. 

Acknowledgement : 
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Fig. 1 shows the variation of <pd-(Gl,o+EF-Ev> with thickness (t) for undoped ZnTe film deposited at 
T =298K (room temperature). Fig. 2 shows the temperature variation of dark and photoconductance 

5 . 
of a BaF 2 doped (7% WfIN) ZnTe film (660 nm) deposited at 573 K. 
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A New Method of Solving Wgrners's Fuzzy LPP 
T. HOSSAIN 

Sabang Col/ege, Vidyasagar University 

T.K. PAL 

Deptt. ofApplied Mathematics, Vidyasagar University 

Abstract: An alternative method of solving the fuz::y linear programming problem of Werners is 
presented here with the help of introducing effective constraints. Each fuz=y constraint is replaced by 
a crisp effective constraint formed by combining the constraint and itstolerance limits with the objective 
function and thereby reducing the number of crisp constraints in the equivalent nonfu=y LP P. 

1. INTRODUCTION : 

Werners [2,3] considered LPP whose constraints are fuzzy with given tolerance limits. According to 
him the fuzzy behaviour of the constraints also makes objective function fuzzy. Werners considered 
the two optimum values of the crisp objective function corresponding to the two feasible regions 
obtained by taking lower and upper tolerance limits ofthe constraints to form the membership function 
of the fuzzy set for this fuzzy objective function. Max-min operator of Bellman and Zadeh [1] are then 
used to the membership functions of both fuzzy constraints sets and fuzzy objective function set to 
find the decision of the fuzzy problem. In this paper a new method of solving the same fuzzy LPP is 
developed with the use of effective constraints. Corresponding to each fuzzy constraint an effective 
constraint is formed with the help of the constraint itself, its tolerance limits and the objective function. 
An equivalent crisp LPP is thus formed giving the same solution as given by Werners's method. As 
the number of constraints and,variables in the equivalent crisp LPPof this method is less than those 
in the Werners's method the optimal solution is obtained in less number of steps of simplex method 
and thus reducing considerable computational time. For illustration of this method two examples are 
considerd. 

2. DEFINITIONS AND RESULTS OF WERNERS : 

The classical crisp LPP is 

Maximize z = cx
 

subject to A xs b and x ~ 0 (2.1)
 

where c and x are n-vectors, b is an m-vector (unrestricted is sign) and A is an m x n matrix.
 

Werners[3] considered the following LPP with fuzzy constraints.
 
f

Maximise z = cx 

SUbject to Ax ~ b and x ~ 0 (2.2) 

where "fuzzy less than or eual to"" ~"denotethe fuzzified version of"::;;" having linguistic interpretation 
as essentially smaller than or equal i.e. (Ax)j is about bj or less for each i. 

The fuzziness of the ith (;=1,2, .rn) constraint over the tolerance range [b., b, + P, 1 is 
characterised by the linear membership function u, (x) as 

if (Ax)j < bj 

~; (x) = [Pj +bj - (Ax); Jlp; if b, s (Ax)j s b, + Pj .. o if (Ax); > b, + Pj . 
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According to Werners because ofthe fuzzy behaviour of the constraints the objective function should 
also become fuzzy. To get the membership function for this fuzzy objective Werners first defind m and 
m+m' as follows 

m = max cx 

subject to (Ax). :5 b,. i =1.2 •............,m
 
. I 

and x ~ 0
 

and
 

m + m' =max cx
 

subject to (Ax)i:5 bi, + Pi' i =1,2, m
 

and x ~ o.
 

Using m and m' the membership function of the fuzzy objective function is defind as
 

1 if cx > m + m'
 

I!o (x) = (ex - m)/m' if m :5cx :5 rn-rn'
 

o	 if cx < m. 

The optimum solution of this fuzzy LPP is obtained by using Bellman-Zadeh's max-min operator
 
as follows
 

max a (x) where a (x) = min {J.Lo (x). I!I (x). ~ (x) I!m(x)}
 

x ~ o.
 

The crisp formulation of this problem is
 

Maximize a
 

subject to I!i (x) ~ a, i = 0,1,2 m
 

0:5a:51
 

and x ~ o.
 

i.e. Maximize a 

subject to	 cx - m' a ~ m 

(Ax); + Pi c s bi • + Pi' i = 1.2.3 m (2.3) 

o:::; a:5 1 and x ~ o. 

3. Development of the proposed method. 

3.1 Construction of effective constraints. 

Let m and rn-rn' be the maximum values 01 the objective function respectively for Ax :5b. x ~ 0 and 
Ax :5 b + p, x ~ o. 

The maximum profit hyperplanes of these two LPP are then ex =m and cx = m + m' and the 
corresponding hyperplanes arrsingfrom the Ilh constraint are respectively (Ax), = b, and (Ax) = b +p;. 
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The hyperplane passing through the intersection ofthe hyperplanes 

cx =m + m' and (Ax); =b is
i 

cx + A.(Ax); - m - m' - A.bi = 0 (3.1.1) 

and that passing through the intersection of the hyperplanes 

cx = m and (Ax); = b; + P; is 

cx + A'(Ax)j - m - bi + P; = O. (3.1.2) 

It is easily seen that these two hyperplanes (3.1.1) and (3.1.2) become identical when A= A'= m'/p. 
Hence the hyperplane passing through both' , 

cx - m - m' =0 =(Ax) - b. and cx - m =0 =(Ax) - b - P is 
I I I I I 

Pi CX + m' (Ax); = P; m + P; m' + rn'b . (3.1.3) 

The hyperplane (3.1.3) may be called as the ith effective hyperplane. Noting the fact that the feasible 
region corresponding to the effective constraints must contain the original feasible region. the ith 
effective constraint is taken as 

p,cx + m' (Ax). ::5 p, m + pm' + m'b. (3.1.4)
I I I I I 

3.2 Equivalent crisp LPP : 

For each i = 1,2, , m replacing the fuzzy constraint (Ax)j ~ b; of the LPP (2.2) by the effective 
constraint (3.1.4) the equivalent crisp LPP of the fuzzy LPP (2.2) is obtained as 

Maximize z = cx 

subject to P, cx + m'(Ax), ::5 ~ m + Pi m' + rn'b i = 1.2 m (3.2.1) 

and x ~ o. 

Comparing the crisp LPP (2.3) and (3.2.1) it is seen that the number of constraints in (2.3) is always 
more than the number of constraints in (3.2.1) by one. Also the number of variables in (2.3) is one 
more than that in (3.2.1). Hence in the simplex method the LPP (3.2.1) needs less computations 
that needed for the LPP (2.3). 

4. NUMERICAL ILLUSTRATION 

To illustrate the method two examples are considered one of which is due to Werners [4.5]. 

Example 4.1 

Werners (4.5] considered the fuzzy LP model 

Maximize z = 2x, + x
2 

subject to x, (4.1.1) 

Xl + x2 ::5 4 

O.5x, + x2 ~ 3 

and x.: x ~O
2 

with "tolerance intervales" of the fuzzy constraints as PI =6. P2 =4. P3 =2. 
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To get m and m+m' we are to solve two crisp LP problems 

Maximize z = 2x, + x2 

subject to	 x, ~3 (4.1.2) 

x, + x2 ~4
 

0.5x, + x2 s 3 C'{
 
and x, , x2 ~O
 

and 

Maximize z = 2x, + x2 

subject to x, ~9 (4.1.3) 

x, + x2 ~8 

" 0.5x, + x2 s 5 

and x, ,x2 ~O.
 

The optimal solution of the LPP (4.1.2) is Xl = 3, x2 = 1, zmax = 7 and
 

that of the LPP (4.1.3) is x, = 8,x2 = 0, zm.. = 16.
 

:. m = 7 and m + m' = 16 i.e. m = 7 and m' = 9.
 

Using Werners's method the equivalent crisp LPP is
 

Maximize z =	 a 

subject to	 2x1 + x2 - 9a ~ 7 (4.1.4) 

x, + 6a~ 9 

x, +x2 +4a ~8 

O.5x, + x2 + 2a ~ 5 

and	 x"x2,a~0. 

This LPP contains 4 constrainsts in 3 variables and applying simplex method the optimal solution x, 
= 5.84, x = 0.05 and a =0.53 is obtained in 4 iterations (each table containing 8 columns).

2 

Using the method of effective constriants the equivalent crisp LPP is 

Maximize z = 2x, + x2 

subject to 7x, + 2x2 s 41 (4.1.5) 

17x, + 13x2~100 

8.5x, + 11x2s 59 

and 

This LPP has 3 constriants in 2 variables and simplex method needs only 3 iterations (each containing 
only 5 columns to yield the optimal solution x = 5.84, x2 = 0.05, z =11.737. ,	 m.x 
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Example 4.2 

In the standared form (2.2) ofthe fuzzy LPP with only fuzzy constraints 'b' is taken to be unrestricted
 
in sign. To discuss this situation containing some components of 'b' positive and some negative the
 

following LP model is considered.
 

Maximize z = Xl + x
2

- 2x
3
 

-8x, + 2x - 3x ~ - 10 (4.2.1)
 
2 3
 

2x, - 2x
2 

+ 3x
3 
~ 10
 

2X2-X3~4
 

x, -x2 ~ 2
 

sx, - 2x + 3x ~ 20
2 3
 

- x, - x2 + x3 ~ - 5
 • 
and x, , x • x3 ~ O.2 

The tolerance intervals of the fuzzy constraints are p, = 2, P2 = 5, P3 = 3, P4 = 10, P5 = 6 and P6 =3. 
Here it is easily seen that m =6 and m' =8. 

The equivalent crisp LPP of the fussy LPP (4.2.1) in Werners's method is 

Maximize z =a 

subject to x, + x - 2x - 8a ~ 6 (4.2.2)
2 3 

ax, - 2~2 + 3x3- 2a ~ a
 

2x - 2x + 3x3+ 5a:-::; 15

1 2 

2x - x3 + 3a s 7
2
 

X
l-X2 

+10a:-::;12
 

5x, - 2x2+3x + 6 a:-::; 26
3 

x, + x2- x3- 3a ~ 2
 

x, , x2 ' x3 ' a ~ 0 .
 

To solve the LPP (4.2.2) simplex method requires 6 tables each containing 14 columns. The optimal 
solution is x, = 5.95, x2 = 2.96, x3 = 0, a = 0.36. 

The equivalent crisp LPP obtained by the present method is 

Maximize z = x, + x2- 2x3 
subject to 31x, - 9x2+ 14x

3 
~ 26 (4.2.3) 

21x, -11x :-::;150
2+14x3
 

3x, + 19x2- 14x
3 

::;74
 

9x, + x2- 10x3 :-::;78
 

23x - 5x + 6x ::;122

l 2 3
 

- 5x, - 5x2+ 2x
3 

::;2
 

~ O. 

VUJPS 1997 

I' 

7 



The same solution x, = 5.95. x
2 
=2.96. x

3 
=0 and z=8.903 is obtained here in only 4 tables of simplex
 

method each table containing only 10 columns.
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Hall Effects on Hydromagnetic Flow in a Horizontal 
Channel in the Presence of Inclined Magnetic Field 

G. DOGRA, A. K. KANCH AND R. N. JANA 

Department ofApplied Mathematics, Vidyasagar University 
Midnapore - 721102, West Bengal, India. 

Hall effects on the hydromagnetic flow of a viscous incompressible conducting fluid between two 
horizontal perfectly conducting plates in the presence of a uniform magnetic field which is inclined 
with the positive direction of vertical axis IS considered. It is found that the primary velocity 
increases while the secondary velocity decreases with Increase In angle of Inclination of the 
applied magnetic field. It is also found that for large Hartmann number, there exists a thin boundary 
layer near the plates. The thickness of this layer increases with Increase In angle of inclination 

of the magnetic field. 

1.INTRODUC110N 

It is well known (see cowling [1]) that the Hall currents become important when the strength of the 
magnetic field is very strong. Hall effects on the hydromagnetic flow of a viscous incomperssible liquid 
through parallel plates channel have been studied by Sato [2], Yamanishi [3], Sherman and Sutton 
[4]. In all these studies they ,have considered the transverse applied magnetic field. The present 
investigation, isdeveloped to the study of the effects of Hall current on flow when the applied magnetic 
field is inclined at an angle ewith the positive direction of the vertical axis. An exact solution of the 
governing equation of the fUllydeveloped flowis obtained. It is found that for large values of Hartmann 
number, there exists a thin boundary layer near the plates which increases with increase in angle of 
inclination (8) of the applied magnetic field. It is also found that the boundary layer thickness is 
independent of the Hall parameter m. 

2. Mathematical formulation and its solution 

Consider the fully developed steady flow of an electrically conducting viscous incompressible fluid 
between two infinite long perfectly conducting plates separeted by a distance 2 L. The origin of the 
cartesian coordinate system is taken at the central region of the channel, x-axis in the direction of flow " 
and z-axis perpendicular to it. A uniform magnetic field H is applied along z-axis which is inclimed o 
at an angle 8with the positive direction of z-axis. ForfuJlydeveoped flow all physical quantities, except 
pressure, will be function of z-only. Since Hall currents interacts with the magnetic field to generate 
a transverse motion of the fluid, the flow and the magnetic field can be taken as (u, v, 0) and (Hx + Ho 
sin e, Hy , Hoeos 8) respectively. The equations of momentum and the magnetic induction equations, 
taking Hall current into account. can be written as 

ap d2u dH x a =- -- + Il -- + Il H cose -- (1) 
ax dz 2 e 0 dz 
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d~ 
0= fl (2) 

dz 2 

dp dHy dH xo=- -- - H, -- - (H + H cose) -- (3)x o
 
az dz dz
 

d2H d2H 
y dux 

- ro 't ;:; a fl Ho cose-- (4)
e e e 

dz2 dz2 dz
 

d2H d2H
 
y dvx+w t = 0' ~ H cose-- (5)

e e e a 
dz2 dz2 dz 

where fl is the coefficient of viscosity, fl the magnetic permeability, p the fluid density, 0' the fluid 
e 

conductivity, we the cyclotron frequency and t the elctron collision time. 
e 

The boundary conditions for the velocity and the magnetic fields are respectively 

u= v = 0 at y = ± L 

dH dHyx 
= - = 0 at y ± L. (6) 

dz dz 

Introducing non-dimensional variables 

T\ = y/L, u, = uUv, VI = vUv, h = H/O' fl vH .x e o

hy = H/O' fl v Ho' (l)e 

equations (1), (2), (4) and (6) beccome 

d2u, 

dT\2 

cFv, 

dT\2 

d2h 
x\l 

dT\2 

d2h 
y 

dT\2 

. dH 
x 

+ M2 cose-­
dT\ 

=-R (8) 

+ M2 coss 
dh, 
- ­

dT\ 
=0 (9) 

+ m cose 
d2h 

y 

dT\: 
+ cos e 

dU, 

dT\ 
= 0, (10) 

- m cose 
d2h 

x 

dT\: 
+ cos I:l 

dv, 

d" 

= 0, (11) 

dp )Hall parameter and R= ( - the non-dimensional pressureqracient.
pl' ax 
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0.= 
'>/2 

The boundary conditions (6) become 

= = 0 at 11 =:: 1. (12) 

The solution of the equations (8) - (11) subject to the boundary conditons (12) are 

R(o.-i~)2 cosh (0. + i~)11 
F(11) = ]. (13) 

(0.2+ ~2)2 cosh (0. + i~) 

Rcose (0. - j~)2 (1 + im coss) sinh(o. + i~)11
 
h(TJ) = [
 

u, =V1 =a 

(14) 
(0.2 + ~2) (1 + m2cos2e) (0. + i~) cosh(0.+ i~) 

where 

(15) 

2e (16)M2 cos {( 
~= [ 

1 + m2cos2e 

On separating real and imaginary parts, we can readily find x and y-components of velocity and
 
magnetic field from equations (13) and (14).
 

We now discuss a few particular cases of interest.
 

Case - I: When M2 « 1 and m2 « 1.
 

Neglecting square and higher powers of M2 and m2 in (13) and (14) and on using (15), we get
 

u, 1 _1_ 11 4 ) + ____(1 - 11 2) + M2 cos-a + (17)--- (- -=- 11 2 
­

R 2 24 4 24 

v, 
= m M2 cos-e (- 5 + 11 2 11 4

) +--, (18) 
R 24 4 

-

24 

h 11 ) + M2cos2e 
-x [( _1 11 3 __1 115-113 + ':"11) +--]. (19)=cose 

( 1~R 3 2 12 2 

h 1 1 
y 

= rncos-e [( '13- _1 11) +- M2 cos2e ( _1_ 115-11 3 +t 11) +-l (20) 
R 3 2 6 10 
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The above expressions show that for weak applied magnetic field, the velocity and the magnetic field 
in the x-direction is independent of Hall parameter m. It is seen that in the absence of magnetic field, 
the problem is reduced to the classical hydrodynamic flow through a straight channel under constant 
pressure gradient and we have. 

R 
u,=- (1-Tl2) , v,=O. (21) 

2 

Case - II. When M2 » 1 and m2« 1. 

When M2 is large and m is small in order of magnitude, the boundary layer type flow is expected. 
Writing ~ =1 -Tl. we get 

R -M~COS8) 
u= -- ( 1-e (22) 

1 M2coS2S 

R - M ~ coss ) -M~cose ] 
v1 = [ - mcoss ( 1-e + ~ M m cos2e~ e (23)I 

R [ 1 -M~COSl:J] 
h =-- ~+--e . (24) 

x M2cosS Meese 

mR 1 - M ~ coss - M ~ coss ] 
hy = [ - ~e + e . (25)

M2 2 

The above equations (22) and (23) show the existance of a thin boundary layer of order O(1/McoS8) 
in the vicinity of the plates. It is seen that the thickness of the boundary layer is independent of Hall 
parameter m. It is also seen that the thickness of the boundary layer increases with increase in e and 
becomes infinite when 8 =900

. The expression (22) and (24) show that both the velocity and the 
magnetic field in the x-direction are independent of Hall parameter m.ln the central core given by ~ ~1/ 

M coss about the vertical axis of the channel, the velocity and the magnetic field become 

(26) 

R 
h =-- ~ h, =O. (27) 

x rvFcosl:J ' 

It is evident from the above equations (26) and (27) that in the central region the secondary velocity 
is weak in comparision to the primary flow and the induced megnetic field h, =O. 
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3. Results and Discussions 

The primary and secondary velocity profiles have been plotted aqainstn forfarious values ofM2, sand 
n in figures 1 and 2 respectively. It is seen that for fixed values of M2 and rn, the primary velocity 
increases while secondary velocity decreases with increase in 8. It is also seen that both the primary 
and secondary velocity increase with increase in Hall parameter m when M2and 8 are fixed. Further. 
for fixed values of m and 8,at any point both are velocity components decrease with increase in M2, 
as expected, since the magnetic field exerts a retarding influence on the flow. 
We h,a~e presented the non-dimensional magnetic field components h and hy against 11 for M2= 5 x 
and for dirrerent values of 8 and m in figure 3. It is seen +hat both h and h, decrease with increase in x 
m for fixed values of 8 and M2. It is also seen that for fixed values of M2and m, both h and hy increase x
 
for hx :s; 45° and decrease for 8 > 45°.
 

The non-dimensional shear - stress due to primary and the secondary flow at the plate 11 = ± 1are 
respectively. 

r =~) 11=±1 =+ R(aSinh2a-~Sin2~), 
(28) 

x d11 (a2+~2) (cosh 2 ~ + cos 2 ~) 

and 

R(~ sinh 2 a - a sin 2 ~) 
t = ~) 11 = ± 1 =±----------- (29) 

y d11 (a2+~2) (cosh 2 a + cos 2 B) 

The non-demensional shear stresses 't and 'tv at the plate 11 = 1 have been plotted against Hall x 
parameter m for various valuesof8and for M2= 1Oinfigure4.ltisobservedthat both r; and 1'xincrease 
with increase in either m or 8. On using (16), it is found form (28) and (29) that in the absence of Hall 
currents (m = 0), the non-dimensional shear stress at plate 11 = 1 in the x and y - directions are 
respectively. 

tanh (M coss) 
t = ± and 1'y = O. (30) 

x 
M cos8 

Above relations show that in the absence of Hall current (m = 0), the shear stress due to secondary 
flow vanishes, as expected, at both the plates while that due to the primary flow vanishes neither at 
the upper plate ( 11 = 1) nor at the lower (11 = -1) 
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On a Type of Semi-Symmetric Metric Connection 
on a Riemannian Manifold 

U.C.DeANoB.K.De 

Deparlment ofMathematics, University ofKalyani,
 
Kalyani, - 741 235, West Bengal, India.
 

Key words : Semi-symmetric metric connection, Weyl conformal curvature tensor, conformally 

flat manifold. 

1. INTRODUCTION: 

Fridemann and Schouten [a] introducedsemi-symmetric connection. Yano [b]synthesizedthe notion 
of semi-symmetric connection.Healso provesthat a Riemannian manifold admits asemi-symmetric 
metric connection ofzero curvaturetensor ifandonlyif it isconformallyflat [b].The objectofthis paper 
is to study a Riemannian manifold which admitsa semi-symmetricmetric connection with a certain 
form of curvature tensor. 

Consider an n-dimensional orientable Riemannian manifoldwitha metric tensor 9 and its Levi-civita . 
connection V .We considerall geometric objectsonMbesufficientlysmooth. Denote arbitraryvector 
fields on M by X,Y and Z etc. A linear connection V on M is said to be a semi-symmetric metric 
connection [b] if there existsa 1-form It such that the torsion tensor T is given by 

T(X,Y) = It (Y)X-It (X)Y (1) 

andV 9 = 0 

For such a metric connectionn [b] 

v- xY = VxY + It (Y) X - g(X.Y) P (2) 

where P is a vector field such that g(P,X) = 1t(X). We denote the curvature tensor, Ricci tensor of type 
(0,2), the scalar curvature and the Weyl conformal curvaturetensor of M with respect to Vby R, S, r, 
C respectively.A bar over them refers to V . We know that [b] 

R (X,y)Z =R(X,Y)Z - a(Y,Z)X + a(X,Z) Y 

-g(Y,Z) AX + g(X,Z)AY (3) 

where 

a(X,Y) = (Vxlt) (Y)-It (X) It(Y) + -; It \P)g(X,Y) (4) 

and 

AX = V P -It(X)P + !... It(P)X (5)x 2 
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In this connection we recall that 

n
 
S(X,y) = I R(X,V,Vy)
 

i=1 "
 

where (V} is an orthonormal basis of the tangent space at each point of the manifold M. 

C(X,Y)Z = R (X,Y)Z + "Aff,Z)X - "A(X,Z)Y 

+ gff,Z)LX-g(X,Z)LY,	 (6) 

1 
where "A(X,y) = - -- S(X,y) + g(X,Y)
 

(n-2) 2(n-1) (n-2)
 

and g(LX,Y) = "A(X,y) 

1.	 in this section we deal with the implications of the prescription 

R (X,Y)Z = <j>R(X,y)Z, 

where 6 is a real function on M. 

Lemma 1. IfR(X,y)Z = 4'R(X,y)Z, cjl a real function on M, then 

(1 - ¢) S (X,Y) = (fl - 2) o.(X,Y) + a 9 (X,V) (1.1 ) 

(1 - Q)r = 2(n -1) div P + (n -1) (n - 2) 1t(P) (1.2) 

a (X,y) = (~-1) "A(X,Y) (1.3) 

where a is the trace of A and n>3. 

Proof.	 From (3) we can write 

9 [R (X,y)Z, WJ = g[R(X,y)Z,WJ - 9 [o.ff,Z) X,WJ 

+ g[a(X,Z) Y,WJ - ~ [gff,Z) AX,WJ 

+ g[g(X,Z)AY,WJ	 (1.4) 

Putting X = W in (1.4) and from the given hypothesis we have 

6 9 [R(X,Y)Z, X] =g[R(X,Y)Z,X]- ~ [aff,Z) X,X] 

+ g[a(X,Z) Y,X]- ~ [gff,Z) AX,X]
 

+g[g(X,Z)AY,X] (1.5)
 

Let us take X = Vi' then (1.5) becomes 

\) 9 [R (Vj'Y)Z, VJ = g[R(Vj,Y)Z,VJ - 9 [aff,Z) Vi,VJ 

+ g[a(Vi'Z) Y,VJ - 9 [gff.Z) AVYJ 

+ g[g(V"Z)AY,VJ	 (1.6) 
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From (1.6) we get 

<1>S(y,Z) =S(Y,Z) - n a(Y,Z) + 2 a(Y,Z) - ag(y,Z) 

l.e., (1 - <II) S(Y,Z) =(n - 2) a(Y,Z) + ag(y,Z) 

This completes the proof of (1.1) 

(1.7) 

Using the relation (4) and (5) we get from (1.7) 

(1 - <\» S(X,V) ::: (n - 2) [ g( Y, \;7xP) - g(X,P) g(y,P) 

+ 1.- g(P,P) g(X,Y)] + (divP­
2 

0-2 
--1t(P»g(X,Y)

2 
(1.8) 

r-
Putting X =Y =Vi in (1.8) we get 

(1 - <II)r = 2(n -1) divP + (n -1) (n - 2) 1t(P) 

This completes the proof of (1.2) 

Putting X =Y =Vi in (1.1) gives 

(1 - <II) r = (n - 2) a + a n 

where a is the trace of A. 

(1.9) 

Using (1.1) and (1.9) in (7) we get 

1 1 
A(X,y) = - -­ [ 

n-2 1-<;> 
(en ­ 2) a(X,y) + a g (X,Y)} ] 

1 
-­ {(n ­ 2)a + an} 

1-<1> 
+ ---------g(X,Y) 

2(n -1) (n -2) 
(1.10) 

Nowfrom (1.10) we have 

a(X,Y) = (<I> -1) A(X,Y) 

This completes the proof of (1.3) 

Now using (1.3) in (3) we get 

R (X,Y)Z ::: R(X,y)Z-(<II -1) A(Y,Z)X- (<11-1) A(X,Z)Y 

-g(y,Z) AX + g(X,Z) AY 

= R(X,Y)Z+ ¢R(X,Y)Z-oR(X,Y)Z-<IIA(Y,Z)X 

+ A(Y,Z) X + <lI A(X,Z)Y - A(X,Z)Y -g(y,Z)AX + g(X,Z)AY (1.11) 
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Nowg(g(y,Z)AX,W)	 =g(y,Z) g(AX,W)
 

= g(y,Z) a.(Z,W)
 

= g(Y,Z) (¢-1) 'A.(X,W), [from (1.3)]
 

= (<1>-1) g(y,Z) g(LX,W)
 

= g( (<l> -1) g(y,Z) LX,W
 

:. g(y,Z) AX =(<I> -1) g(y,Z) LX (1.12) 

Similarlyg(X,Z) AY = (<1>-1) g(X,Z)LY (13) 

Using (1.12) and (1.13) in (1.11) itfollows that 

(<I> -1) C(X,Y)Z = a 
Thus we can state the following theorem: 

Theorem If a Riemannian manifold M of demension n > 3 admits a semi-symmetric metric conrection 
_such that R- =<1> R, <I> is a real function on M, then the following relation holds 

(1 - <1» C(X,y)Z =0 

If <I> =0, then from the above theorem we can state the following corollary. 

Corollary If a Riemannian manifold admits a semi-symmetric metric connection whose curvature 
tensor vanishes, then the maniflod is contormally flat.
 

The above corollary has been proved by K. Yano [b] in another way.
 

References :
 

1.	 A. Friedmann, and J. A. Schouten, : Uber die Geometric der helbsymmetrischen Uber 
tragungen, Math. 21 (1924),211-223. 

2.	 K. Yano, : On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl., 15 (1970), 
1579-1581. 

VUJPS 1997. 

II 

17 



Evaluation of second exponential integral and its 
applications to thermal analysis 

W.G. DEVI 

ChemistryDepartment, T.S. Paul Manipur Women's College
 
Mongsangei, Impha/-795008, Manipur
 

Abstract: In the present paper a precise method for evalution of second exponential integral is 
presented. The suitability ofthe method is tested by evaluating an untegral which frequently occurs in 
thermal analysis problems. The method has also been checked by fitting experimental differential 
thermal analysis curves. 

Key Words: Second exponential integral, differential thermal analysis, activation energy, order 

of kinetics, pre-exponential factor. 

1. INTRODUCTION : 

Nonisothermal thermoanalytical techniques are widely used in the analysis of different types of 
reactions such as chemical reactions and diffusion controlled reactions etc. Nonisothermal analysis 
of reactions normally involve the heating of reactants from ambient temperature to high temperature 
to enable reactants to undergo some transformation. Bymeans ofsuch analysisa group ofphenomena 
namelythermogravimetry (TG),differential thermal analysis (DTA) anddifferential scanning calorimetry 
(DSC) can be studied, Mathematical modelling of these processes leads of their fuller understanding 
thereby checking the validity of assumptions and deducting quantitative conclusions from apparent 
kinetic parameters. These techniques '·3 have been widely used for identification of many types of 
materials, the study of properties like thermal stability and the investigation of various processes of 
practical importance. But a major limitation of mathematical modelling non-isothermal techniques 
arises due to complication in the mathematical analysis of the data due to the fact that the integral 
faT exp(-ElRTjdT (E=activation energy, R=universalgas constant, Tthetemperature in Kelvin occuring 
in the analysis has no closed from solution. This integral can be written in terms of the second 
exponential" E2(u). In the present article a method of evaluation of second exponential integral is 
presented. The accuracy of the present method is tested by evaluating the integral fa Texp(-E/RT')dt' 
for various values of u=EJRT and comparing with the results of a recent paper by Quanyin and Su 6 . 

Finally a further check of present method is done by fitting experimental DTA curvess' of the 
dehydration of Ni[mpipz)2(NCS)2] and decomposition of Ca (DMP)2(MCA)2' where mpipz, DMP and 
MCA respectively stand for N-methyipiperazine, dimethyipiperazine and monochloroacetato. 

2. Theory 

The second exponential integral is defined as­

E2(u)=f;(1/t2)eXp(-ut)dt (1) 

A continued fraction development for Ez(u) is qiven by 8 

1 2 3 2 
(2)E2(u)=exp(-u) (­

u+ 1+ u+ 1+ u+ 
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b, 
where a, + ............. is the compact form of the continued fraction" 

a + a +
2 3 

a + 
1 

a +... 
3 

The present method has the advantage that it convergres rapidly for u>1 and is highly precise. For
 
u<1 ,E (u) is evaluated by using the expression
 

2 

5 
E -ulnu - Iakuk (3)2(u)=exp(-u) 

R=O 1 

where the coefflclents ak'sare given by 

a = 0.57721566o
 
a, = 0.99999193
 

a =-0.24991055
2 

a =0.05519968 
3 

a = -0.00976004 
4 

a = 0.00107857
6 

Nowthe integral J exp(-EJRT)dT occuring inthe mathematical modelling of the non-isothermal thermal 
analysis can be <expressed as 

.r 
I(T) =J exp(-EJRT') dT' 

o
 

=(E/R) rexp(-u')/u'2du' (with u'=ElRT')
 
o
 

=(E/R) rexp(-tu)Jt2dtu (u'=tu)

o 

(ElRu)E
2(u) 

(from (1) (4) 

3. Results and discussions 

The values ofthe second exponential integral computed bythe presenttechnique are in excellent 
agreement with those reported in Abramowitz and Stequrr'. All computations have been carried out 
by using double precission arithmatic. For a further check of the present method the values of the.r 
integral J exp (-ElRT') dT' evaluated by using the second exponential integral have been compared 
(Table 1fwith the values of the integral evaluated numerically. The numerical evaluation have been 
carried out byusing32 pointGauss Legendre Quadrature rnethodv'". The range (O,T)havebeen divided 
into suitable number of subintervals. We see that the values of the integral computed by using the 
present method of the evaluation of the second exponential integral for all practical purposes are 
identical with those of numerical evaluation forallvaluesofu. Onthe other hand itis evidentfrom Table 
1 thatthe method never completely agrees with the numerical result.ActuallyQuanyin and Su method 
fails for u<5. 

Further in order to check the validity of the present technique an attempt has been made to fit the 
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experimental DTAculVes ofthedehydration reactionNi[(mpipz)2(NCS)~. 2H20 J~Ni[(mpjpz)2(NCS)2 
and the decomposition reaction Cd[(DMP)2(MCA)21~ Cd[(DMP)(MCA)l Following Luo 11 for a DTA 
curve the expression for the temperature deviationdT from the horizontal baseline is given by 

dT=Aexp(-ElRT} [1 +(n-1 )(Al41) JT exp(-E1RndTln/ln-lI (n#1) (5)
TO 

dT=Aexp(-ElRT) expHAl41)JToexp(-ElRT')dT'] (n=1) (6) 

where A, the pre-exponential factor, n, the order of kinetics, $, thelinear heating rate, Tothe starting 
tempertaure and T. and temperature at time 1.At the peak temperature T=Tm' the deflection of DTA 
curve is maximum so that 

[ddT/dT]T~Tm =0 (7) 

From equations (6) and (7) one can write for n=1 

4IEIRTm2=Aexp(-ElRTm> (8) 

Similarly for n#1one gets 

1+(n-1)«A/41)J\o exp(-ElRT')dT' = (nARTm,2/0E)exp(-ElRTm> (9) 

The integral occuring in equations (5), (6) and (9)can be expressedinterms ofthe second exponential 
integral E2(u) (Equation (4». It is chosen to define by ST-, the expe~c:mental DTA results given in a 
graphical form from which one can use a certain number of points dT i for i=1.2,....N. The process is 
initiatedwith the arbitrary values of Eand n. The pre-exponential factor A can be computed either from 
equation (8) (n=1) offrom equation (9) (n;.=1) usingthe presentvalues ofTm' E,Toand n.The theoretical 
curve dT,iscomputed from equation(5) (n;.=1) orfrom (6)(n=1)andthemean deviationS, and rootmean 
square deviation S2are calculated as 

S, =(1/N)I.[dT
i 
-dT-;l (10) 

S2={(1/N)I.[~Ti-~T-Y}'/2 (11) 

S, = S2 = 0 will mean a complete coincidence of the theoretical and experimental DTA curves. An 
attempt has been made to find out the values of E and n, that minimize S1 and S2' For a given value 
of n, S1 increases for decrease in values of E andvice versa. If S, is positiveE is increased by adding 
a certain amount dE to it. The process is repeated until S, changes sign. Now half of the previous 
amount namely 0.5dE is subtracted from E and this process is repeated. namely the correction is 
halved in each step and its sign is determined by the sign of 5,. Since 5, is the sum of positive and 
negative differences it's absolute value can be reduced to any desired extent by changing E. 
independentofthevalue of n.Thusthe processmightbe continueddownto anarbitrarilysmall absolute 
value of S, until the chage in E is small enough. The dependence on the order of kinetics n has been 
checked by S2' The value of n has been varied in small steps in order to reduce S2 and in each step 
E is recalculated such that S, gets arbitrarily small. n is changed in acertain direction as long as S2. .. 
decreases. If S2 increases the direction of the change in n is altered. The process is terminated when 
the change in n is small enough. This method is applied to obtain the kinetic parameters E,A and n 
ofthe DTA peaks corresponding to the chemical reactions mentioned above (Table 2). The values of 
activation energies so determined are in fairagreement with those obtained" 7 by using Borchardt and 
Daniels'2 method. 

4. Conclusions 

In the present paper a numerical technique has been developed for the computation of the second 
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exponential integral E
2(u) 

for any u>O. The suitabilityofthe present method has been assessed by 
the evaluation of the integral t exp (-EJRT)dT required in the analysisofthe TG and DTAdata. The 
technique has been tested ful1her bydeveloping a computer code for curve fitting and applying it to 
analyse some experimental DTA curves. 

Acknowledgement 

The author is grateful to Prof. Ak. Manlhar Singh and Dr. P. S. Mazumdar for their constant 
encouragement in the course of this work. 

References: 

1.	 R. C. Mackenzie., "Differential Thermal Analysis", Academic Press, London (1972). 

2.	 D. S. Bhunia., and S. K. Biswas, Vidyasagar UniversityJ. Physical Sciences, Vol. 1, Chemistry 
Section, P 4 (1995). 

3.	 N. K. De., C. Sinha, and P. Chattopadhyay, Vidyasagar UniversityJ. Physical Sciences, Vol. 
1, Chemistry Section, P 8 (1995). 

4.	 M. Abramowitz. and I. A. Stegun., "Handbook of Mathematical Functions", Dover Publica­
tions, New York, ch. 5 (1965). 

5.	 R. auanyin., and Y. Su., J. Thermal Anal., Vol. 44, P 1147 (1995). 

6.	 L. K. Singh., and S. Mitra., J. Chem. Soc. Dalton Trans. P 2089 (1987). 

7.	 R. K. B. Singh., and Mitra. 5., "Abstracts of 4rth Manipur Science Congress",Manipur 
University, India, P 8 (1 ~92). 

8.	 A. Erdelyi., "Higher Transcendental Functions" Vol. 2, McGraw-Hili, New York. ch. 9 (1953). 

9.	 H. S. Hall, and S. R. Knight, "Higher Algebra" SBD Publishers, New Delhi (1995). 

10.	 D. T. Y. Chen., and P. H. Fang., Thermochil Acta, Vol. 18 , P 170 (1977). 

11.	 K. M. Luo., Thermochim Acta, Vol. 255, P 241 (1995). 

12.	 H. J. Borchardt. and F. Daniels., J. Am Chern. Soc., Vol. 79, P 41 (1957). 

•
 

VU.IPS 1997 

I' 

21 



Table 1. Values of the integral JT0 exp(-EIRT') dT' 

u=EJRT Values of the integral r exp (-E/RT') dT' 
0 

Numerical Present Quanyin and SUo 

0.5 326.6439 326.6439 63321.801 
1 148.4955 148.4955 1324.366 
2 37.5343 37.5343 0.0 
3 10.6419 10.6419 2.7045 
4 3.1982 3.1982 1.6312 
5 9.9647(-1)* 9.9647(-1) 6.5978(-1) 
6 3.1826(-1) 3.1826(-1) 2.4022(-1) 
7 1.0351(-1) 1.0351(-1) 8.4313(-2) 
8 3.4138(-2) 3.4138(-2) 2.9189(-2) 
9 1.1384(-2) 1.1384(-2) 1.0059(-2) 
10 3.8302(-3) 3.8302(-3) 3.4649(-3) 
15 1.8108(-5) 1.8108(-5) 1.7313(-5) 
20 9.4048(-8) 9.4048(-8) 9.1685(-8) 
25 5.1569(-10) 5.1569(-10) 5.0731(-10) 
30 2.3437(-12) 2.3437(-12) 2.3171(-12) 
40 6.0757(-17) 6.0757(-17) 6.0365(-17) 
50 1.8559(-21) 1.8559(-21) 1.8482(-21) 
60 5.6522(-26) 5.6522(-26) 5.6359(-26) 
70 2.7618(-30) 2.7618(-30) 2.7559(-30) 

*A(-B) donates Ax10-B 

Table 2. Determination of the kinetic parameters of some experimental DTA curvesv' by
 
Curve fitting method. E stands forthe activation energy calulated by using Borchardt and


BD 
Daniels method 

Chemical reactions E n A E
BD 

studied (KJmole- 1) (5-1) (KJmole-1) 

Ni(mpipz)2 (NCS)J 2H2O 
~ Ni(mpipz)2(NCS)2] 143.9 1.5 7.83(16) 144.13 

Ca[(DMP)2(MCA)2 
~ Ca[(DMP)(MCA)2J 35.0 1.0 82.35 35.02 
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