PHYSICS

PAPER - PHS-104.1 & 104.2

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

PAPER - PHS-104.1

(Analog Electronics)

(Attempt Q1, Q2 and any one from the rest)

GROUP - A

1. Attempt any two of the following questions:

(a) What is skip distance in radio wave propagation?

- (b) Define the terms: Tropospheric Waves, Surface wave propagation.
- (c) Define slew rate of an Op-Amp. What is it's value for an ideal Op-Amp?
- (d) Why TV and FM radio waves cannot propagate through long distances?

GROUP - B

- 2. Attempt any *two* of the following questions: 4×2
 - (a) Explain the method of generation of Single Side Band (SSB) signal using phase cancellation method. Draw the waveform of SSB signal.
 - (b) With necessary block diagram, explain the operation of a superheterodyne FM radio receiver. Write the value of intermediate frequency used in FM receiver.
 - (c) Draw the circuit diagram of emitter coupled differential amplifier and derive the condition for which it will offer infinite CMRR.

- (d) Explain the operation of Doppler RADAR.
- 3. (a) Draw the circuit diagram of a current mirror circuit using low β transistors and show that it will behave as a current mirror circuit deriving the necessary mathematical expression.
 - (b) Derive RADAR range equation.
- 4. (a) Explain the operation of Foster Seeley discriminator for the demodulation of FM signals with the drawing of the necessary circuit diagram.
 - (b) Explain the method of generation of stereo FM signal. Also show how we can recover the L and R audio signals at the stereo FM receivers.

PAPER - PHS-104.2

(Digital Electronics-I)

3

GROUP - A

1. Answer any two bits:

 2×2

(a) Draw the waveform of the following output

- (b) What will be maximum frequency of the clock pulse that can be used in a 4-bit asynchronous counter? consider the t_{pd} for each flipflop is 10 nano second.
- (c) Draw the Karnangh map for a 4 bit circuit which receives BCD input and gives high output when input is in odd number.
- (d) Draw a circuit which can convert a 5kHz signal into 1kHz signal.

GROUP - B

2. Answer any two bits:

- 4×2
- (a) Draw the circuit of a synchronous 3-bit up/down counter and explain the operation briefly.
- (b) (i) What do you mean by SIPO register?
 - (ii) Explain the output states of the following circuit. Assume initially $Q_1 = Q_2 = Q_1 = Q_0 = 0$

(c) (i) What do you mean by as table multivibrator?

- (ii) Draw a circuit, using 555 timer IC, to produce a square wave of frequency 15 KHz.
- (d) Convert a D flipflop into T flipflop.

GROUP - C

3. Answer any one bits :

 8×1

- (a) (i) Write down the excitation table of T flipflop.
 - (ii) Using T flip-flops design a synchronous counter circuit which has the following output states 2+6

(b) (i) Solve the following digital equation by Karnangh map

$$Y = \prod_{m} (0,3,4,7,8).d(11,12,15)$$

(ii) Draw a circuit to check two signals $A(A_1 A_0)$ and $B(B_1 B_0)$ are equal or not.

(iii) Design the following circuit with NAND gates. 3+3+2

[Internal Assessment - 10 Marks]