M.Sc. 2nd Semester Examination, 2023

PHYSICS

PAPER - PHS-201.1 & 201.2

[Old and New]

Full Marks: 40

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

PHS-201.1

(Quantum Mechanics - II)

1. Answer any two of the following: 2×2

(a) Consider the Clebsch-Gordan coefficients $\langle j_1, j_2; j, m | j_1, j_2; m_1, m_2 \rangle$. Use the J_{\pm} ladder operators to find $\langle 1, 2; 3, 2 | 1, 2; 0, 2 \rangle$.

(b) The Hamiltonian for studying Zeeman effect is given by

$$H = \frac{p^2}{2m_e} + V(r) + \alpha(r)\vec{L}.\vec{S} - \frac{e}{2m_e c} |\vec{B}| (L_z + 2S_z)$$

where V(r) and $\alpha(r)$ are known functions. Identify a good basis that can be used for perturbation theory, when the external magnetic field $|\bar{B}|$ is (i) weak (ii) strong.

- (c) If $\phi(\vec{p})$ is the momentum-space wave function for state $|\alpha\rangle$, that is, $\phi(\vec{p}) = \langle \vec{p} | \alpha \rangle$. Find the momentum-space wave function for the time-reversed state $\Theta | \alpha \rangle$.
- (d) A quantum state $|\psi\rangle$ is known to be in an eigenstate of L^2 and L_z with eigenvalues $\hbar^2 l(l+1)$ and $m\hbar$ respectively. Calculate the expectation values (i) $\langle \psi | L_x | \psi \rangle$ (ii) $\langle \psi | L_x^2 | \psi \rangle$

2. Answer any two of the following:

- 4×2
- (a) Estimate the ground-state energy of a one-dimensional harmonic oscillator with $H = p^2/(2m) + mw^2x^2/2$ using the trial wave function $\psi(x) = N/(x^2 + a^2)$, where the normalization $N = (2a^3/\pi)^{1/2}$ and a is a real constant which is to be varied.
- (b) Identify (i) $\pm \frac{1}{\sqrt{2}}(x+iy)$ (ii) z as spherical tensors and find the conditions for which the matrix elements $\left\langle l', m' \mid \pm \frac{1}{\sqrt{2}}(x+iy) \mid l, m \right\rangle$ and $\left\langle l', m' \mid z \mid l, m \right\rangle$ are non-zero.
 - (c) Consider the eigenstates $|l, m\rangle$ of the angular momentum operators L^2 and L_z . Show that $\pi |l,m\rangle = \lambda_{l,m} |l,m\rangle$, with $\lambda_{l,m}^2 = 1$, where π is the parity operator. Use the commutator $[\pi, L_{\pm}]$ to show further that $\lambda_{l,m}$ is independent of m.

(d) A system having the Hamiltonian H_0 is perturbed by H_1 so that $H = H_0 + H_1$ where

$$H_0 = E_0 \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 and $H_1 = E_0 \begin{pmatrix} 0 & \epsilon \\ \epsilon & 0 \end{pmatrix}$

with $\in \ll 1$. Find the first and second order shifts in the energy levels of H_0 using perturbation theory. Compute the eigenvalues of H exactly and compare your results.

- 3. Answer any *one* of the following: 8×1
 - (a) Consider a one-dimensional harmonic oscillator having the Hamiltonian

$$H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$
.

Suppose the particle has charge e and is perturbed by an electric field of strength E in the x direction.

(i) Explain using the parity symmetry of H₀
 why the first order correction to the energy vanishes.

- (ii) Compute the change in each energy level to second order in the perturbation.
- (iii) Show that this problem can be solved exactly and compare the result with the perturbation approximation. 2+3+3
- (b) Suppose that the energy wave functions for a particle in a periodic potential with periodicity a is satisfy $\psi(x+a) = -\psi(x)$.
 - (i) If $\psi(x) = e^{ikx}$ write down the allowed values k and the energy eigenvalues when the Hamiltonian is $H_0 = p^2/2m$. Show that the ground state is doubly degenerate.
 - (ii) A perturbing potential $V = V_0 \cos\left(\frac{2\pi x}{a}\right)$ is applied where $V_0 \ll \hbar^2/ma^2$. Write down the secular equation for first order perturbation and compute the lowest two energy eigenvalues. 3+5

PHS-201.2

4. Answer any two questions:

 2×2

(a) Find the inverse Fourier transform of

$$F(w) = \frac{-4}{\sqrt{2\pi} w^3} (w \cos w - \sin w)$$

- (b) If SO(2) involves rotational symmetry about a single axis, find its generator.
- (c) A square pulse is given by $f(t) = A[\theta(t) \theta(t t_0)]; A = \text{amplitude.}$ Find its Laplace transform.

(d) If
$$\phi(x) = x + \frac{1}{2} \int_{-1}^{+1} (t - x) \phi(t) dt$$

Prove that $\phi(x) \approx \frac{3}{4} x + \frac{1}{4}$.

Answer any two questions: 5.

$$4 \times 2$$

- (a) $\frac{\partial^2 \Psi}{\partial x^2} \frac{\partial^2 \Psi}{\partial x \partial y} = \sin x \cos 2y$. Solve it by Lagrange's method.
- (b) $y''(x) + w^2y = 0$ with y(0) = 0; y'(0) = 1. Show that

$$y(x) = x + w^2 \int_0^x (t - x) y(t) dt.$$

- (c) $m\frac{d^2x}{dt^2} = P\delta(t)$ where P is a constant with x(0) = 0: x'(0) = 0.
 - Solve it by using Laplace transform.
- (d) Find the eigen values and eigen functions of

$$\phi(x) = 2 \int_{0}^{2\pi} \cos(x-t) \, \phi(t) \, dt$$

6. Answer any one question:

 8×1

(a) Solve the integral equation for $\phi(t)$.

$$f(x) = \int_{1}^{+1} \frac{\phi(t)}{(1 - 2tx + x^2)^{1/2}} dt \qquad -1 \le x \le 1.$$

if

$$(i) \quad f(x) = x^{2s}$$

$$(ii) \ f(x) = x^{2s+1}$$

4 + 4

(b) (i) If
$$\theta(t) = +1$$
 for $t > 0$

$$=-1$$
 for $t < 0$

and F.T. of $\theta(t) = \frac{-2i}{w}$

Find the F.T. of
$$\frac{1}{2} \left[\theta \left(t + \frac{1}{2} \right) - \theta \left(t - \frac{1}{2} \right) \right]$$
.

(ii) Construct the group multiplication table of $C_{4\nu}$ and find the invariant subgroup and factor group of $C_{4\nu}$. 3+3+2