MCA 2nd Semester Examination, 2023

MCA

(Numerical Methods and Optimization Technique)

PAPER - MCA-205

Full Marks: 100

Time: 3 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

SECTION-I

(Numerical Methods)

GROUP - A

Answer any three questions:

 2×3

1. Differentiate between round-off error and truncation error.

- 2. What are absolute, relative and percentage errors?
- 3. What is the difference between Regula-Falsi and Bisection method?
- 4. Find the Newton-Raphson formula to find \sqrt{N} , where N is a positive integer.
- 5. Compare Gauss-Elimination method and Gauss-Jordan method for solving a linear system of equations.

GROUP - B

Answer any two questions:

 15×2

- 6. (i) Find the root of the equation $x^4 x 10 = 10$ by Bisection method, correct up to two decimal places.
 - (ii) Find the value of y at x = 1 for the given set of points (1, 6), (3, 4), (2, 5) using Lagrange Interpolation method. 8 + 7
- 7. (i) Find the value of y(0.1) and y(0.2) from the following differential equation using Euler's method:

$$\frac{dy}{dx} = x^2 + y^2$$
 with $y(0) = 1$.

(ii) Solve the following system of equations by Gauss-Elimination method:

$$5x - y - 2z = 142$$

$$x - 3y - z = -30$$

$$2x - y - 3z = -50.$$

$$7 + 8$$

8. (i) Solve the following system of equations by Gauss-Siedel iteration method correct up to four decimal places:

$$2x + 6y - z = 54$$
$$6x + 15y + 2z = 72$$
$$x + y + 54z = 110.$$

(ii) Find the value of the following by taking 6 sub intervals with the help of Trapezoidal rule:

$$\int_0^6 \frac{dx}{1+x^2}.$$
 8+7

9. (i) The following table gives the value of y = f(x) for certain equidistance value of x. Find the value of y when x = 1895 using Newton's forward difference formula:

x:	1891	1901	1911	1921	1931
<i>y</i> :	46	66	81	93	101

(ii) Find the eigenvalues and eigenvectors of the following matrix:

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

8 + 1

SECTION - II

(Optimization Technique)

GROUP - A

Answer any two questions:

 2×2

10. What is the necessity of optimization technique?

- 11. What do you mean by basic feasible solution?
- 12. Define slack and surplus variable.
- 13. Prove that the dual of a dual is primal.
- 14. Write down the advantages of Two-phase method over Big-M method.

GROUP - B

Answer any two questions:

 15×2

15. (i) Solve the following LPP by simplex method:

M ax in ize
$$z = 6x_1 + 8x_2$$

Subject to $5x_1 + 10x_2 <= 60$
 $4x_1 + 4x_2 <= 40$
 x_1 and $x_2 >= 0$.

(ii) Formulate the dual of the following primal problem:

Maximize
$$z = 4x_1 + 10x_2 + 25x_3$$

Subject to

$$2x_1 + 4x_2 + 8x_3 \le 25$$

$$4x_1 + 9x_2 + 8x_3 \le 30$$

$$6x_1 + 8x_2 + 2x_3 \le 40$$

$$x_1, x_2 \text{ and } x_3 >= 0$$

16. (i) Determine the initial basic feasible solution for the following transportation problem by VAM method.

	D1	D2	D3	D4	Demand
S1	3	1	7	4	300
<i>S</i> 2	2	6	5	9	400
<i>S</i> 3	8	3	3	2	500
Supply	250	350	400	200	

(ii) Use the graphical method to solve the following LP problem:

Maximize
$$z = 2x_1 + 3x_2$$

Subject to $x_1 + x_2 >= 6$
 $7x_1 + x_2 >= 14$
 x_1 and $x_2 >= 0$.

8 + 7

10 + 5

17. (i) Use the Big-M method to solve the following LP problem:

Maximize
$$z = 5x_1 + 3x_2$$

Subject to

$$2x_1 + 4x_2 \le 12$$

 $2x_1 + 2x_2 = 10$
 $5x_1 + 2x_2 >= 10$
 x_1 and $x_2 >= 0$.

(ii) Find the optimal assignments for the assignment problem with the following cost matrix:

	<i>M</i> 1	M2	M3	M4	M5
<i>J</i> 1	3	8	2	10	3
$\overline{J2}$	8	7	2	9	7
<i>J</i> 3	6	4	2	7	5
<i>J</i> 4	8	4	2	3	5
<i>J</i> 5	9	10	6	9	10

8 + '

(8)

18. (i) Solve the following nonlinear programming problem using Kuhn-Tucker conditions:

Maximize
$$z = 3x_1^2 + 14x_1x_2 - 8x_2^2$$

Subject to

$$3x_1 + 6x_2 <= 72$$

$$x_1$$
 and $x_2 >= 0$.

(ii) Explain Genetic algorithm with suitable example. 10 + 5

[Internal Assessment - 30 Marks]