2023

M.Sc.

4th Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER: MTM-402

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

The symbols used have their usual meanings.

(MTM-402)

UNIT-1

(Marks : 20)

1. Answer any **two** questions from the following: 2×2=4

(a) What are the causes of uncertainty?

/403

(Turn Over)

- (b) Justify, why any interval number I = [a, b] does not hold I I = 0?
- (c) Let $f(x) = x^2 1$. Find $f(\widetilde{A})$, where $\widetilde{A} = \{(-2, 0.41), (-1, 0.75), (0, 1.0), (1, 0.32), (2, 0.96), (3, 0.2)\}.$
- (d) Show that union of two convex fuzzy sets is not a convex fuzzy set in general.
- 2. Answer any two questions from the following: 4×2=8
 - (a) Prove that the fuzzy sets satisfy the distributive laws under the standard fuzzy union and intersection.
 - (b) Let $\tilde{A} = (0, 3, 5)$ be a triangular fyzzy number. Show that \tilde{A}^2 is not a triangular fuzzy number in general.
 - (c) Show that 2(-1, 0, 5) + (1, 3, 5, 7) = (-1, 3, 5, 17) using α -cut method.
 - (d) Define the interval number. Write different arithmetic operations on interval numbers.

A

Answer any one question from the following: 8×1=8

- 3. (a) (i) What do you mean by symmetric and non-symmetric fuzzy LPP?
 - (ii) Explain the Werner's method to convert the fuzzy LPP to corresponding crisp LPP. 2+6
 - (b) (i) Illustrate the Bellman and Zadeh principle of optimality of a fuzzy LPP with an example.
 - (ii) Let the fuzzy LPP with fuzzy resources be

Maximize $Z = 2x_1 + x_2$

subject to

$$3x_1 + x_2 \le \widetilde{13}$$

$$4x_1 + 3x_2 \le \widetilde{16}$$

$$x_1 + 2x_2 \le \widetilde{10}$$
and $x_1, x_2 \ge 0$

and the tolerances as $p_1 = 2$, $p_2 = 4$ and $p_3 = 3$. Convert the fuzzy LPP to an equivalent crisp parametric programming problem.

(4) UNIT-2

(Marks : 20)

- **1.** Answer any **two** questions from the following: $2 \times 2 = 4$
 - (a) Write the different features of soft computing.
 - (b) Find the weights and threshold values of an ANN that should classify the following: input/output pairs:

x_1	x_2	$x_1 \wedge x_2$
0	0	0
0	-1	0
1	0	0
1	1	1

- (c) Write the drawbacks of gradient-based optimization techniques over GA.
- (d) How does fuzzy logic differ from usual logic?

- 2. Answer any two questions from the following: 4×2=8
 - (a) Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c\}$ be two universes of discourses. Also, let $\widetilde{A} = \{(1, 0.2), (2, 0.5), (3, 0.7), (4, 1.0)\}, \widetilde{B} = \{(1, 0.3), (2, 0.4), (3, 0.8), (4, 0.7)\}$ and $\widetilde{C} = \{(a, 0.1), (b, 0.6), (c, 0.9).$ Determine the fuzzy relation of the following fuzzy rule: "If X is \widetilde{A} AND X is \widetilde{B} , THEN Y is \widetilde{C} ".
 - (b) Explain different learning processes of ANN.
 - (c) Realise a Hebb net for the logical AND function with bipolar inputs and targets.
 - (d) Explain Roulette-wheel selection procedure for real coded GA.
- 3. Answer any one question from the following:

 8×1=8
 - (a) Describe the binary coded GA procedure to maximize a real valued function $y = f(x_1, x_2)$ in $a \le x_1, x_2 \le b$.

(b) Write the iterative computation to classify the following patterns by perceptron learning rule:

 $\{[(1, 1, 1), 1], [(1, 1, -1), 1], [(1, -1, -1), -1], [(-1, 1, -1), -1]\}.$

