2023

M.Sc.

4th Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER : MTM-401

(FUNCTIONAL ANALYSIS)

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

The symbols used have their usual meanings.

Answer all questions.

- 1. Answer any four questions from the following: $2\times4=8$
 - (a) State with justification, whether the following statement is true of false:

Let Y be a proper dense subspace of a Banach space X. Then Y is not a Banach space with respect to the induced norm.

- (b) Let $A, B \in BL(H)$ be self-adjoint where H is a Hilbert space and $\alpha, \beta \in \mathbb{R}$. Show that $T = \alpha A + \beta B$ is self-adjoint.
- (c) Let H be a Hilbert space and y be a fixed element of H. Define $f: H \to \mathbb{C}$ by $f(x) = \langle x, y \rangle$ for all $x \in H$. Find ||f||.
- (d) Let X be a normed space and Y be a closed subset of X. If $x_n \xrightarrow{w} x$ in X, then show that $x_n = Y \xrightarrow{w} x + Y$ in X/Y.
- (e) Show that an inner product function is continuous.
- (f) Give an example of an operator on a Hilbert space which is normal but not self-adjoint.
- **2.** Answer *any* **four** questions from the following : $4 \times 4 = 16$
 - (a) When is an operator said to be self-adjoint on a Hilbert space? Let H be a Hilbert space and let $T: H \to H$ be a bounded linear operator. Prove that T is self-adjoint if and only if $\langle Tx, x \rangle$ is real for all $x \in H$. 1+3=4
 - (b) Let C be a closed convex subset of a Hilbert space H. Prove that C contains an unique element of smallest norm.
 - (c) Let S be a subset of a normed space X. Show that f(S) is bounded for all $f \in X^*$ if and only if $\sup\{\|x\|: x \in S\} < \infty$.

- (d) Let $X = \mathbb{C}^3$. For $x = (x(1), x(2), x(3)) \in X$, let $||x|| = [(|x(1)|^2 |x(2)|^2)^{\frac{3}{2}} + |x(3)|^3]^{\frac{1}{3}}$. Show that $||\cdot||$ is a norm on X.
- (e) Examine if C[0,1], the space of all real valued continuous functions over the closed interval [0,1] is a Banach space with respect to the norm defined by $|f| = \int_{0}^{1} |f(t)| dt$, where $f \in C[0,1]$ and the integral is taken
- (f) Let X and Y be inner product spaces. Then show that a linear map $F: X \to Y$ satisfies $\langle F(x), F(y) \rangle = \langle x, y \rangle$ for all $x, y \in X$ if and only if it satisfies |F(x)| ||x|| for all $x \in X$ where the norms on X and Y are induced

in Riemann sense.

Answer *any* **two** questions from the following: $8 \times 2 = 16$ **3.** (a) Let X and Y be Banach spaces and $A \in BL(X,Y)$. Show that there is a constant c > 0 such that $||Ax|| \ge c ||x|||$ for all $x \in X$ if and only if Ker(A) = (0) and Ran(A) is closed in X.

by the respective inner products.

(b) Let X, Y be Banach spaces and Z be a normed space. Consider $G \in B(X,Z)$ and $H \in B(Y,Z)$. Suppose that for every $x \in X$, there is a unique $y \in Y$ such that G(x) = H(y) and define F(x) = y. Show that $F \in B(X,Y)$.

space H and $x \in H$. Then show that there exist unique $y \in M$ and $z \in M^{\perp}$ such that

(b) Show that a normed space X is a Banach space if and only if every absolutely

(b) Let $T \in BL(H)$ where H is a Hilbert space.

3

5

3

5

6

2

BL23(016)-150

summable series of elements of X is summable in X. (a) Let F and G be subspaces of a Hilbert space 5. H. Show that $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.

x = y + z.

 $||T||^2 = ||T^*||^2 = |T^*T|| = ||TT^*||$ (a) Let X be an inner product space and $A, B \subseteq X$. Then show that (i) $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$ (ii) $A \subset A^{\perp \perp}$

(iii) $A^{\perp} = A^{\perp \perp \perp}$

Then show that

(b) If $||x+\lambda y|| = ||x-\lambda y||$ is true for all scalar λ , then show that $x \perp y$. * * * S-4/M. Sc./MTM(P-401)/23