M.Sc. 2nd Semester Examination, 2023 APPLIED MATHEMATICS

(General Topology)

PAPER - MTM-206

Full Marks: 20

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

1. Answer any two questions:

 2×2

- (a) Is the collection $\tau = \{U: X U \text{ is infinite or empty or all of } X\}$ a topology on X?
- (b) Show that the order topology on \mathbb{Z}_+ is the discrete topology.

- (c) Define homeomorphism of two topological space with an example.
- (d) Define basis for a topology on a set X.

2. Answer any two questions:

 4×2

- (a) Let A be a subset of a topological space X. Then show that $x \in \overline{A}$ if and only if every open set U containing x intersects A.
- (b) Let $f: X \to Y$ be a function, Then show that the following are equivalent:
 - (i) For every closed set V of Y, $f^{-1}(V)$ is closed in X.
 - (ii) For every $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$.
- (c) Define convergence of a sequence of points in a topological space X. Show that in a Hausdorff space X, a sequence can converge to at most one point of X.
- (d) Show that \mathbb{R}^{ω} in the box topology is not connected.

3.	Answer any one question:			8 ×
	(a)	(i)	Let X be a Hausdorff space and S be compact subspace of X . Then show the S is closed in X .	
		(ii)	Show that every compact Hausdon space is normal.	rff
	(b)	(i)	Define regular space with examp Show that a subspace of a regular spa is regular.	
		(ii)	Define Lindelof space. Give example show that the product of two Lindel space need not be Lindelof.	