M.Sc. 2nd Semester Examination, 2023 APPLIED MATHEMATICS

PAPER - MTM-203

Full Marks: 40

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

UNIT-I

(Abstract Algebra)

[Marks : 20]

1. Answer any two questions:

 2×2

- (a) Define solvable group with example.
- (b) Show that every finite field extension is an algebraic extension.

(c) Determine the degree of

$$\left[\mathbb{Q}\left(\sqrt{3+2\sqrt{2}}\right):\mathbb{Q}\right].$$

- (d) Show that $[\mathbb{R} : \mathbb{Q}]$ is not finite.
- 2. Answer any two questions:

 4×2

(a) If $K \subseteq F \subseteq L$ is a tower of fields then show that

$$[L:F][F:K] = [L:K]$$

where $[L:F]$ denotes the degree of L over F .

- (b) Show that it is impossible to construct a regular heptagon by using straightedge and compass only.
- (c) Define perfect field with example. Also let F be a field of positive characteristic p. Then show that F is perfect if and only if $F = F^p = \{a^p \mid a \in F\}$.
- (d) Show that a pentagon is constructible by ruler and compass.

				200	
2	Answer	anv	one	question	:
	A LLID TT UI				

 8×1

3

5

(a) (i) Let E be a field and G a finite group of automorphisms of E. Then show that E/E^G is a finite Galois extension.

(ii) Show that the Galois group of the Galois extension $\mathbb{F}_{q^n}/\mathbb{F}_q$ is a cyclic group of order n.

(b) (i) Show that no finite field is algebraically closed.

(ii) Define splitting field with example. Show that if F is a field then any polynomial $f(x) \in F[x]$ has a splitting field.

UNIT-II

(Linear Algebra)

[Marks : 20]

4. Answer any two questions:

- 2×2
- (a) Justify the statements as true or false:
 - (i) Every linear operator has an adjoint.
 - (ii) The adjoint of a linear operator is unique.
- (b) Let V be an n-dimensional vector space over F. What is the characteristic polynomial of the identity operator V? What is the characteristic polynomial of the zero operator?
- (c) Let V be vector space of dimension d and $T: V \to V$ a linear mapping with rank r and nullity n. Show that $rn \le \frac{1}{4}d^2$.
- (d) Determine dual basis to the basis $\{(1, 0, -1), (-1, 1, 0), (0, 1, 1)\}$ of \mathbb{R}^3 .
- 5. Answer any two questions: 4×2
 - (a) Let T be a linear operator on a real inner

product space V, and define $H: V \times V \rightarrow R$ by $H(x, y) = \langle x, T(y) \rangle$ for all $x, y \in V$.

- (i) Show that H is a bilinear form.
- (ii) Prove that H is symmetric if and only if T is self-adjoint.
- (iii) Explain why H may fail to be a bilinear form if V is a complex inner product space.
- (b) Define symmetric and skew-symmetric bilinear forms. Show that any bilinear form b on a vector space V is the sum of a symmetric bilinear form and a skew-symmetric bilinear form.
- (c) Let V be an inner product space, and let T be a normal operator on V, and T* be an adjoint operator of T. Then prove that following statements are true.
 - (i) $||T(x)|| = ||T^*(x)||$ for all $x \in V$.
 - (ii) T-cl is normal for every $c \in F$.

- (iii) If x is an eigenvector of T, then x is an eigenvector of T^* . In fact, if $T(x) = \lambda x$, then $T^*(x) = \bar{\lambda}x$.
- (iv) If λ_1 and λ_2 are the distinct eigenvectors of T with corresponding eigenvectors x_1 and x_2 , then x_1 and x_2 are orthogonal.
- (d) State and prove the first isomorphism theorem.
- 6. Answer any *one* question: 8×1
 - (a) (i) Let A be a symmetric matrix. Prove that A is positive definite if and only if all of its eigen values are positive.
 - (ii) Let $P_2(\mathbb{R})$ denotes the collection of all polynomials of degree ≤ 2 and $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear operator defined by T(f(x)) = 2f(x) f'(x) for all $f(x) \in P_2(\mathbb{R})$. Find the Jordan canonical form of T.

- (b) (i) Let T be a linear operator on an inner product space V, and suppose that ||T(x)|| = ||x|| for all x. Prove that T is one-to-one.
 - (ii) Let V = C([0, 1]) and define $\langle f, g \rangle = \int_0^{\frac{1}{2}} f(t)g(t)dt$, where C([0, 1]) is the space of continuous real-valued functions defined on the interval [0, 1].

Is this an inner product on V?

(iii) Let V = P(R) with the inner product space $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$, and consider the subspace of $P_2(R)$ with the standard basis β . Using Gram Schmidt Process to compute the orthogonal vectors of standards basis β of $P_2(R)$, and then use this orthogonal basis to obtain an orthonormal basis for $P_2(R)$. 2+2+4