PG/IIIS/MATH/305A/23 (New)

M.Sc. 3rd Semester Examination, 2023

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Advanced Optimization)

PAPER – MTM-305A (New)

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

- 1. Answer any four questions of the following:
 - (a) Explain the effects of addition of a new constraint in the optimal solution of an LPP.
 - (b) What do you mean by exact and inexact one dimensional search?
 - (c) What do you mean by quadratic programming problem?

- (d) Discuss the need of integer programming in mathematical programming.
- (e) Write the short note on characteristics of dynamic programming.
- (f) Show that the optimum point can be obtained for a quadratic objective function in a single step by Newton's method.
- 2. Answer any four questions of the following: 4×4
 - (a) Following is the optimal solution of an LPP

					3		
		c_{j}	4	6	2	0	0
c_B	X_B	b_B	y_1	<i>y</i> ₂	y_3	<i>y</i> ₄	<i>y</i> ₅
4	x_1	1	1	0	-1	$\frac{4}{3}$	$-\frac{1}{3}$
6	x_2	2	0	1	2	$-\frac{1}{3}$	$\frac{1}{3}$
z _j -	$-c_j$	16	0	0	6	<u>10</u> 3	<u>2</u> 3

If the cost coefficient c_1 changes to 8, then find the optimal basic feasible solution of the modified problem.

- (b) Describe the branch-and-bound method to find the optimal solution of an IPP.
- (c) Maximize

$$f(x) = \begin{cases} \frac{2x}{3}, & x \le 3\\ 5-x, & x > 3 \end{cases}$$

in the interval [1,4] by Fibonacci method for n = 5.

- (d) Using steepest descent method Minimize $f = x_1^2 + x_2^2 + 8x_1 + 10x_2 + 50$ starting from the point $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- (e) Determine the value of x_1 , x_2 , x_3 so as to maximize $\{x_1.x_2.x_3\}$ subject to $x_1 + x_2 + x_3 = 10$ and $x_1, x_2, x_3, \ge 0$.

(f) Derive the Kuhn-Tucker necessary conditions of the following quadratic programming problem

Maximize
$$z = 2x_1 + 3x_2 - 2x_1^2$$

subject to $x_1 + 4x_2 \le 4$
 $x_1 + x_2 \le 2$
and $x_1, x_2 \ge 0$.

- 3. Answer any two questions of the following:
 - (a) Use dynamic programming to solve the following LPP

Maximize
$$z = 3x_1 + 5x_2$$

subject to $x_2 \le 6$
 $x_1 \le 4$
 $3x_1 + 2x_2 \le 18$
and $x_1, x_2 \ge 0$.

(b) Solve the following IPP using Gomory's method

Maximize
$$z = 5x_1 + 7x_2$$

subject to $-2x_1 + 3x_2 \le 6$
 $6x_1 + x_2 \le 30$

 $x_1, x_2 \ge 0$ and integers.

(c) Graphically solve the following goal programming problem

Minimize
$$z = P_1d_1^- + P_2d_2^- + P_3d_3^-$$

Subject to $2x_1 + 3x_2 \le 30$;
 $6x_1 + 4x_2 \le 60$;
 $x_1 + x_2 + d_1^- - d_1^+ = 10$;
 $x_1 + d_2^- - d_2^+ = 7$;
 $x_2 + d_3^- - d_3^+ = 8$ and
 $x_1, x_2, d_1^-, d_1^+ \ge 0$ $(i = 1, 2, 3)$.

(d) Write down steps of Wolfe's modified simplex method for solving quadratic programming problem (the mathematical form of quadratic programming problem is to be assumed by you).

[Internal Assessment - 10 Marks]