PG/IIIS/MATH/304/23 (New & Old) (CBCS)

M.Sc. 3rd Semester Examination, 2023

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Discrete Mathematics)

PAPER - MTM-304(New&Old)(CBCS)

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

- 1. Attempt any four questions out of six questions:
 - (a) State De-Morgan's law for three variables. Using truth table, verify it.
 - (b) What is Exclusive-OR Gate?

- (c) Define the k-regular graph. Draw a 3-regular graph with 4 vertices.
- (d) Prove that the maximum number of edges in a connected simple graph with n vertices is n(n-1)/2.
- (e) Define the greatest element of a Poset with an example.
- (f) What is a semi-lattice? Give an example.
- 2. Attempt any two questions out of six questions: 4×4
 - (a) Draw Karnaugh map and simplify the following Boolean expressions:
 - (i) $AB + A\overline{B} + \overline{A}\overline{B}$
 - (ii) $AB + A\overline{B}C + ABC$.
 - (b) Solve the recurrence relation of the Fibonacci numbers $f_n = f_{n-1} + f_{n-2}$, $n \ge 2$ with the initial conditions $f_0 = 1$, $f_1 = 1$, by the method of characteristic roots.

- (c) Draw a graph with 9 vertices having degree sequence 1,2,5,7,8,10.
- (d) Define bipartite graph and complete bipartite graph. Is a subgraph of a bipartite graph bipartite?
- (e) Give the two definitions of lattice in connection with Poset and binary compositions, and show that they are equivalent.
- (f) Define sub-lattice with an example. Show that union of two sublattices is not a sublattice.
- 3. Attempt any two questions out of four questions: 8×2
 - (a) (i) Write down the axioms of Boolean algebra. What are the main differences between Boolean algebra and algebra of real numbers.
 - (ii) What is a Full Adder? Write down the truth table and block diagram of it. Also, develop its logic circuit.

- (b) Show that the maximum possible height of a strictly binary tree on 2n + 1 vertices in n.
- (c) (i) Define finite-state machine with explanation.
 - (ii) Let M be the finite-state machine with state table appearning in the following:
 - (a) Find the input set Σ , the state set S, the output set O, and the initial state of M.
 - (b) Draw the state diagram of M.
 - (c) Find the output string for the input string aabbcc.

	f			g		
$\sqrt{2}$	a	b	C	a	b	C
s_0	s_0	s_1	s_2	0	1	0
S_{1}	s_1	s_1	s_0	1	1	1
s_2	s_2	s_1	s_0	1	0	0

(d) (i) Using mathematical induction, prove that for any integer n > 1.

$$\frac{1}{12} + \frac{1}{23} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

(ii) Define the cardinality of a set. What is the difference between relation and mapping? Explain all with examples.

[Internal Assessment - 10 Marks]