PG 1st Semester Examination, 2023

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Classical Mechanics and Non-linear Dynamics)

PAPER - MTM-105

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

- 1. Answer any four questions:
 - (a) Establishe the relationship between the Poisson bracket and Hamilton's equations in classical mechanics.
 - (b) What is the Coriolis force, and how does it relate to a rotating frame?

 2×4

- (c) How does the Lagrangian differ from the Hamiltonian in classical mechanics?
- (d) State the basic postulates of the special theory of relativity.
- (e) State Hamilton's principle and write its significance.
- (f) Suppose a rigid body is rotating about a fixed point. Find its kinetic energy in terms of moment of inertia and product of inertia.
- 2. Answer any four questions: 4×4
 - (a) State and prove the Poincaré theorem.
 - (b) A Lagrangian for a particular physical system can be written as
 - $L = \frac{m}{2} \left(\dot{x}^2 + 2b\dot{x}\dot{y} + c\dot{y}^2 \right) \frac{k}{2} \left(ax^2 + 2bxy + cy^2 \right),$ where a, b and c are arbitrary constants satisfying $b^2 - ac \neq 0$. Determine the

Lagrange's equations of motion. Examine particularly the case a = 0 = c.

- (c) What do you mean by canonical transformation? If Q = ap + bq, P = cp + dq is a canonical transformation, then find the relation among a, b, c, d.
- (d) Prove that

$$J = \int_{x_0}^{x_1} F(y_1, y_2, ..., y_n, y_1', y_2', ..., y_n', x) dx$$

will be stationary only if

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y_j'}\right) - \frac{\partial F}{\partial y_j} = 0 \text{ for all } j = 1, 2, ..., n.$$

(e) Given a mass-spring system consisting of a mass m and a linear spring of stiffness k hanging from a fixed point. Find the equation of motion using the Hamiltonian procedure, and assume that the displacement x is measured from the unstretched position of the spring.

(f) Let $G = G_1(q_1, q_2, ..., q_n, Q_1, Q_2, ..., Q_n, t)$ be a generating function of a canonical transformation. Prove that

$$p_j = \frac{\partial G_1}{\partial q_j}, P_j = -\frac{\partial G_1}{\partial Q_1}$$

for all j. Hence, prove that if the canonical transformation is given, then one can determine the generating function.

3. Answer any two questions:

 8×2

(a) For any vector R, derive the following equation

$$\left(\frac{dR}{dt}\right)_{fix} = \left(\frac{dR}{dt}\right)_{rot} + w \times R$$

the symbols have their usual meanings.

(b) Suppose a particle of mass m_0 is moving

with a velocity v then show that its mass at any time is given by

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}},$$

where c is the speed of the light.

- (c) Deduce Hamilton's equations of motion starting from Lagrange's equation of motion for an unconnected holonomic system. Hence, show that H + L is explicitly independent of time.
- (d) Consider the following nonlinear dynamical system, $\dot{x} = x^2y x^5$, $\dot{y} = -y + x^2$. Study the stability at the origin and draw the phase diagram.

[Internal Assessment - 10 Marks]