PG 1st Semester Examination, 2023

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(ODE and Special Functions)

PAPER - MTM-103

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

1. Answer any four questions:

- 2×4
- (a) Find all the singularities of the following differential equation and then classify them: $(z-z^2)\omega'' + (1-5z)\omega' 4\omega = 0$.
- (b) Show that $J_n(z)$ is an odd function of z if n is odd.

- (c) Define fundamental set of solutions for a system of ordinary differential equation.
- (d) Define orthogonal functions associated with Sturm-Liouville problem.
- (e) Prove that : $F(-n,b,b;-z) = (1+z)^n$ where F(a,b,c;z) denotes the hypergeometric function.
- (f) Under suitable transofrmation to be considered by you, prove that Legendre differential equation can be reduced to hypergeometric equation.
- 2. Answer any four questions:

 4×4

(a) Show that $J_0^2(z) + 2\sum_{n=1}^{\infty} J_n^2(z) = 1$ and prove that for real z, $\left|J_0(z)\right| < 1$, and $\left|J_n(z)\right| < \frac{1}{\sqrt{2}}$, for all $n \ge 1$.

(b) Using Green's function method, solve the following differential equation

$$y''(x) - y(x) = -2e^x,$$

subject to the boundary conditions y(0) = y'(0), y'(l) = -y(1).

- (c) Establish the generating function for the Bessel's function $J_n(z)$.
- (d) Show that

$$1 + 3P_1(z) + 5P_2(z) + 7P_3(z) + ... + (2n+1) P_n(z)$$
$$= \frac{d}{dz} \Big[P_{n+1}(z) + P_n(z) \Big],$$

where $P_n(z)$ denotes the Legendre's Polynomial of degree n.

(e) If the vector functions $\varphi_1, \varphi_2, ..., \varphi_n$ defined as follows:

$$\phi_1 = \begin{bmatrix} \phi_{11} \\ \phi_{21} \\ \vdots \\ \phi_{n1} \end{bmatrix}, \ \phi_2 = \begin{bmatrix} \phi_{12} \\ \phi_{22} \\ \vdots \\ \phi_{n2} \end{bmatrix}, \dots \phi_n = \begin{bmatrix} \phi_{1n} \\ \phi_{2n} \\ \vdots \\ \phi_{nn} \end{bmatrix}$$

be *n* solutions of the homogeneous linear differential equation $\frac{dx}{dt} = A(t)x(t)$ in the interval $a \le t \le b$, then these *n* solutions are linearly independent in $a \le t \le b$ iff Wronskian

$$W[\varphi 1, \varphi 2, ..., \varphi n] \neq 0 \forall t$$
, on $a \le t \le b$.

(f) Consider the boundary value problem

$$\frac{d^2y}{dx^2} + \lambda y = 0, 0 \le x \le \pi$$

subject to y(0) = 0, $y'(\pi) = 0$. Find the eigen values and eigen functions of the problem.

3. Answer any two questions:

 8×2

- (a) (i) All the eigen values of regular SL problem with r(x) > 0, are real.
 - (ii) Find the general solution of the homogeneous system

$$\frac{dX}{dt} = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} X \text{ where } X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}. 5$$

(b) (i) Establish generating function for Legendre polynomial. Use it to prove that

$$(2n+1)zP_n(z) = (z+1)P_{n+1}(z) + nP_{n-1}(z).$$

$$4+2$$

- (ii) Deduce the confluent hypergeometric differential equation from hypergeometric differential equation.
- (c) (i) Prove that if f(z) is continuous and has continuous derivatives in [-1, 1]

then f(z) has unique Legendre series expansion is given by

$$f(z) = \sum_{n=0}^{\infty} C_n P_n(z)$$

where P_n 's are Legendre Polynomials

$$C_n = \frac{2n+1}{2} \int_{-1}^{1} f(z) P_n(z), n = 1, 2, 3...$$
 6

(ii) Prove that
$$\frac{d}{dz}[J_0(z)] = -J_1(z)$$
.

- (d) (i) Find the general solution of the ODE 2zw''(z) + (1+z)w'(z) kw = 0, (where k is a real constant) in series form for which values of k, is there a polynomial solution?
 - (ii) Deduce the integral formula for hypergeometric function.

[Internal Assessment - 10 Marks]

5