PG 1st Semester Examination, 2023 MATHEMATICS

(Real Analysis)

PAPER - MTM-101

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

- 1. Answer any four questions: 2×4
 - (a) Show that difference of two measurable sets is a measurable set.
 - (b) Let X be a measurable space and $\chi_E: X \to \mathbb{R}$ be a measurable function, where

$$\chi_E(x) = \begin{cases} 1 \text{ if } x \in E \\ 0 \text{ if } x \notin E \end{cases}.$$

Is E a measurable set in X?

- (c) Define Borel set.
 - (d) Show that the set of all natural numbers is a null subset of \mathbb{R} .
 - (e) If α is continuous and β is of bounded variation on [a,b], show that $\alpha \in R(\beta)$ on [a,b].
- (f) State Lusin's theorem.
- 2. Answer any four questions:

4 *4

- (a) Establish a necessary and sufficient condition for a function $f: [a,b] \to \mathbb{R}$ to be a function of bounded variation on [a,b].
- (b) Show that the function f(x) defined on [4,7] by

$$f(x) = \begin{cases} 5, & \text{for all rotationals } x \text{ in } [4,7] \\ 6, & \text{for all irrationals } x \text{ in } [4,7] \end{cases}$$
is not a function of bounded variation on [4,7].

- (c) Suppose f is continous on [a,b] and α is monotonically increasing on [a,b]. Show that $f \in \mathcal{R}(\alpha)$ on [a,b].
- (d) Show that every finite sum of real numbers can be expressed as the R-S integral over some interval.
- (e) Let $f_n: X \to \mathbb{R}^*$ be measurable for n=1,2,3,... Then show that $\liminf_{n\to\infty} f_n$ and $\inf_{n\to\infty} f_n$ are measurable functions on X.
- (f) If $f_n: X \to [0, \infty]$ is measurable for n=1,2,3,..., and $f(x) = \sum_{n=1}^{\infty} f_n(x), x \in X$, then show that $\int f d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$.

3. Answer any two questions:

 8×2

- (a) (i) State and prove the Fatou's lemma.

 Give an example to show that strict inequality can occur in Fatou's lemma. 4
 - (ii) Let μ be a measure on a σ-algebra of subsets of X. Show that the outer measure μ* induced by μ is countably subadditive.
- (b) (i) Let f(x) be defined as $f(x) = \frac{1}{x^{\frac{4}{5}}}$ if $0 < x \le 1$ and f(0) = 0. Show that f is Lebesgue integrable on [0,1]. Also compute the integral.
 - (ii) Evaluate the following:

$$\int_{-3}^{4} (x^2 + 7) d(x - x).$$

(c) (i) Construct a non-measurable subsets of \mathbb{R} .

- (ii) Let $\{E_k\}$ be a sequence of measurable sets in X such that $\sum_{k=1}^{\infty} u(E_k) < \infty$. Then prove that almost all $x \in X$ lie in at most finitely many of the sets E_k . 3
- (d) (i) Let $\{f_n\}_{n\geq 1}$ and $\{g_n\}_{n\geq 1}$ be sequence of measurable functions such that $|f_n| \le g_n$ for all n. Let f and g be measurable functions such that $\lim_{n \to \infty} f_n(x) = f(x)$ for a.e. $x(\mu)$ and $\lim_{n\to\infty} g_n(x) = g(x) \text{ for a.e. } x(\mu). \text{ If}$ $\lim_{n\to\infty}\int g_n\,d\mu=\int g\,du<+\infty, \text{ show that}$

 $\lim_{n\to\infty}\int f_n\,d\mu=\int f\,d\mu.$ 5

(ii) Show that the Cantor set is an uncountable set.

[Internal Assessment - 10 Marks]