2023

M.Sc.

4th Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER: MTM-404A & 404B

Full Marks: 50

Time 2 hours

The figures in the right-hand margin indicate marks.

The sumbols used have their usual meanings.

Answer from any one Section.

SECTION-I

(MTM-404A)

(COMPUTATIONAL OCEANOLOGY)

- 1. Answer any four questions from the following: 2×4=8
 - (a) Derive the expression for u_{uv} (the value of u-velocity at the west face of the control volume) for two points upwind scheme in non-uniform grids, and hence simply this expression for uniform grid.

- (b) Write the advantages of use of finite volume method.
- (c) Discuss about the closed boundary conditions for three unknowns u, v and h at the bottom of ocean for grid-A (cell centered) and grid-B (semi-staggered grid).
- (d) Write down the pressure condition for the wave propagation at the free surface.
- (e) Define the term Rossby radius and give its physical significance.
- (f) Write down a short note on "Poincare wave".
- **2.** Answer *any* **two** questions from the following : $4 \times 2 = 8$
 - (a) (i) Draw the (j. k)th control volume for irregular grid. Apply the finite volume method on the following equation for the aforesaid control volume

$$\frac{\partial q}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \dots (1)$$

where the symbols have their usual meanings.

- (ii) If the global grid is uniform and coincides with lines of constant x and y, then show that the above discretisation coincides with a centred difference representation for the spatial terms of the above original differential equation (1).
- (b) Consider the Sommerfeld radiation condition at the outlet as

$$\frac{\partial \Phi}{\partial t} + u_C \frac{\partial \Phi}{\partial x} = 0$$

where ϕ is any flow variable and u_c is the local wave speed applied. Find the expression for $\phi_{N,j}^n$ using 3-point backward formula for both the derivatives at nth time step over the (N,j)th control volume.

- (c) Using the implicit Euler scheme for time derivative and center differencing for space derivative, discretise the one-dimensional
 - heat conduction equation $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$. 4
- (d) Derive depth-averaged momentum equations for shallow water theory.

- (e) Prove that for the bell-shaped surface elevation, the horizontal velocity expression
 - in a deep ocean is $u = \frac{gh}{2C_0}$ where $C_0 = \sqrt{gH}$. Symbols have their usual meanings.
- (f) Derive an expression for speed of propagation of a stationary wave in the surface of a canal of finite depth.
- 3. Answer any **two** questions from the following: 8×2=16
 - (a) (i) Draw a general finite volume cell k, with four sides, showing cell centre data u_k^n and flux density H^n on a side with side vectors.
 - (ii) Consider the following shallow water equations (SWE)

$$\frac{\partial U}{\partial t} + \nabla \cdot \underline{H} = Q$$

where
$$\underline{H} = \begin{bmatrix} \underline{H}_1 \\ \underline{H}_2 \\ \underline{H}_3 \end{bmatrix} = \begin{bmatrix} \Phi \underline{v} \\ \Phi v_x \underline{v} + 0.5 \Phi^2 \underline{i} \\ \Phi v_y \underline{v} + 0.5 \Phi^2 \underline{j} \end{bmatrix}$$
 and

 \underline{v} is the flow velocity.

Apply the finite volume method for the above equation and on the control volume drawn in part (i).

- (iii) On a structured mesh whose cells are indexed by (i, j) with the subscript 1/2 to denote cell interfaces in the usual way. Simplify the above expression derived in part (ii). 1+5+2
- (b) (i) Draw the grids for grid-A (cell centered), grid-B (semi-staggered grid) and grid-C (staggered grid), and arrange the variables (u. v and h) in all these grids.
 - (ii) Discretize the x- and y-momentum equations of two-dimensional gravity waves with centred differencing for space derivative and backward for time derive on the grid-C.

 3+5
- (c) (i) Derive Klein-Gordon equation for long surface-wave.
 - (ii) Derive the expressions for the surface elevation and the velocity distribution of a single Kelvin wave at a straight coast. 4

(d) (i) Prove that the total energy of stationary wave is $\frac{1}{4}\rho ga^2\lambda$ where a, λ are the wave amplitude and wavelength respectively.

(ii) Define the circulation in fluid rotation and calculate the circulation within a small fluid element.

(7) SECTION—II

(MTM-404B)

(NON-LINEAR OPTIMEZATION)

- 1. Answer any **four** questions from the following: 2×4=8
- (a) What is degree of difficulty in connection with geometric programming.
 - (b) Define the terms Nash equilibrium strategy and Nash equilibrium outcome in mixed strategy.
 - (c) Define Pareto optimal solution in a multiobjective non-linear programming problem.

(d) State Kuhn-Tuker stationary point

- necessary optimality theorem.
- (e) State Karlin's constraint qualification.
- (f) State weak duality theorem in connection with duality in quadratic programming.

- 2. Answer any four questions from the following:
 - (a) Let 0 be a numerical differentiable function on an open convex set $\Gamma \subset R^n$. θ is concave if and only if $\theta(x^2) \theta(x^1) \le \nabla \theta(x^1)(x^2 x^1)$ for each $x^1, x^2 \in \Gamma$.
 - ib) Discuss the various solution concepts for solving multi-objective non-linear programming.
 - (c) State and prove Slater's theorem of alternative.
 - (d) Write the relationship among the solutions of local minimization problem (LMP), the minimization problem (MP), the Fritz-John stationary problem (FJP), the Fritz-John saddle point problem (FJSP), the Kuhn-Tucker stationary point problem (KTP), the Kuhn-Tucker saddle point problem (KTSP).
 - ie) State and prove Kuhn-Tucker saddle point necessary optimality theorem.
 - (f) Write a short note on constraint qualification in connection with non-linear programming.

Answer any two questions from the following: 8×2=16

(a) Using the chance-constrained programming technique to find an equivalent deterministic problem of the following stochastic programming problem :

Minimize
$$F(x) = \sum_{j=1}^{n} c_j x_j$$

subject to
$$P\left[\sum_{j=1}^{n} a_{ij} X_{j} \le b_{i}\right] \ge p_{i}$$

$$x_j \ge 0, i, j = 1, 2, \dots, n$$

when b_i is a random variable and p_i is a specified probability.

Solve the following quadratic programming (b) problem using Wolfe's racthod :

Maximize

$$Z = 10x_1 + 25x_2 = 10x_1^2 - x_2^2 - 4x_1x_2$$

subject to
$$x_1 + 2x_2 \le 10$$

 $x_1 + x_2 \le 9$

$$x_1 + x_2 \le 9$$

 $x_1, x_2 \ge 0$

8

- (c) Describe Beale's method for solving the quadratic programming problem. 8
- (d) (i) How do you solve the following geometric programming problem?

Find
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 that minimizes the

objective function

$$f(x) = \sum_{j=1}^{n} U_{j}(x) = \sum_{j=1}^{N} \left(c_{j} \prod_{i=1}^{n} x_{i}^{a_{y}} \right)$$

 $c_j > 0, x_i > 0, a_{ij}$ are real numbers, $\forall i, j$

- (ii) Define the following terms in connection with duality in non-linear programming:
 - (I) The (primal) minimization problem (MP)
 - (II) The dual (maximization) problem (DP) 6±2

[Internal Assessment : 10 marks]

* * *