2023

M.Sc.

4th Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER: MTM-403

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

The symbols used have their usual meanings.

UNIT-1

(Marks : 20)

(MAGNETO-HYDRODYNAMICS)

- **1.** Answer *any* **two** questions from the following : $2 \times 2 = 4$
 - (a) Write down the basic difference between the flow of magneto-hydrodynamics (MHD) and magneto-fluid dynamics (MFD).

- (b) Describe the working principle of MHD power generator.
- (c) Write down the Maxwell's electromagnetic field equations of moving media.
- (d) Define Hartmann number and explain its significance.
- 2. Answer *any* **two** questions from the following : $4 \times 2 = 8$
 - (a) Find the equations of motion of a conducting fluid in the context of magnetohydrodynamics flow.
 - (b) State and prove Alfven's theorem.
 - (c) Starting from the induction equation $\frac{\delta B}{\delta t} = \nabla \times (\mathbf{v} \times B) \text{ for an infinitely conducting}$ fluid, show that the magnetic flux across any closed contour moving with the fluid remains constant. Interpret this result in terms of the motion of the lines of force.
 - (d) Define the terms Alfven's velocity and Alfven's waves. Hence, derive the speed of propagation is $\sqrt{c^2 + V_A^2}$ for magnetohydrodynamic wave, where symbols have their usual meanings.

- **3.** Answer any one question from the following: $8 \times 1 = 8$
 - (a) Define Couette flow and write down the mathematical formulation of the magnetohydrodynamic Couette flow and derive its velocity and magnetic field expressions. 1+2+5
 - (b) (i) For a conducting fluid in a magnetic field, show that the magnetic body force per unit volume, i.e., $\mu(\nabla \times H) \times H$ is equivalent to a tension $\mu I f^2$ per unit area along the lines of force, together with a hydrostatic pressure $\frac{1}{2}\mu H^2$, where symbols have their usual meanings.
 - (ii) Define magnetic energy and further, find the rate of change of magnetic energy in magneto-hydrodynamics. 5+3

(4) UNIT-2

(Marks: 20)

(STOCHASTIC PROCESS AND REGRESSION)

- **1.** Answer *any* **two** questions from the following : $2 \times 2 = 4$
 - (a) Define the terms (i) accessible state. (ii) return state, (iii) periodic state and (iv) aperiodic state.
 - (b) Define multiple correlation coefficient and indicate how it differs from simple correlation coefficients.
 - (c) Define Markov Chain with an example.
 - (d) What do you mean by transition matrix?
- **2.** Answer any **two** questions from the following: $4 \times 2 = 8$
 - (a) State and prove the first entrance theorem.

- (b) Starting from the probability-generating function of the birth and death process, find the probability of ultimate extinction in the case of the linear growth process starting with *i* individuals at time 0.
- (c) Prove that $1 r_{1:23}^2 = (1 r_{12}^2)(1 r_{13:2}^2)$. The symbols have their usual meanings.
- (d) Prove that the state j is persistent if and only if

$$\sum_{n=0}^{\infty} p_{jj}^{(n)} = \infty$$

- **3.** Answer any **one** question from the following: 8×1=8
 - (a) Deduce multiple regression equation of $x_1, x_2, x_3,..., x_p$ in terms of the means, the standard deviations and the intercorrelations of the variables.

(b) Show that the generating function $P_n(s)$ for the branching process satisfies the following relations:

(i)
$$P_n(s) = P_{n-1}(P(s))$$

(ii)
$$P_n(s) = P(P_{n-1}(s))$$

where $P_1(s) = P(s)$.

