M.Sc. 1st Semester Examination, 2023 ELECTRONICS

PAPER - ELC-102 (U1 & U2)

Full Marks: 50.

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

PAPER - ELC-102 (U1)

(Electronic Materials)

GROUP-A

Answer any two of the following questions:

1. What are the distinguishable characteristics of metallic bonding?

2.	What do you mean	by conducting polymers?	2
----	------------------	-------------------------	---

- 3. Explain intraband transitions.
- 4. What is the condition of quantum confinement? 2

GROUP-B

- Answer any two of the following questions:

 2 × 4

 5. What is meant by point defects in crystal lattice? How are they formed?

 2+2
- 6. Derive Clausius-Mossoti relationship in static field.
- 7. Explain photoluminescence and electroluminescence 2+2
- 8. Derive the temperature dependence of magnetic susceptibility of a paramagnetic substance. 4

GROUP-C

Answer any one of the following question:

1 × 8

9. Obtain an expression for orientational polarization neglecting dipole-dipole interactions. Discuss what happens at high and low temperatures.

5 + 3

10. What are Cooper pairs? Show that in d.c. Josephson effect the super current across the junction depends on the phase difference.

[Internal Assessment - 05 Marks]

PAPER - ELC-102(U2)

(Electron Device)

GROUP-A

Answer any two of the following questions:

1. What do you mean by depletion capacitance? 2×2

How does it differ from diffusion capacitance?

2. How population inversion can be achieved in a semiconductor LASER?

3. Write down briefly the operating principle of a varactor diode.

2

4. How can you determine the carrier concentration of the n side of a P*- N junction using C-V measurements?

2

GROUP-B

Answer any two of the following questions: 4×2

- 5. Derive the analytical expression of depletion layer width (W) of a P-N junction diode. 4
- 6. In case of a metal- semi conductor junction prove that $9 \phi_{Bn} + 9 \phi_{Bp} = E_g$, where $9 \phi_{Bn}$ and $9 \phi_{Bp}$ are the barrier heights of a metal-N and metal-P junctions respectively.
- 7. Derive the expression of pinch-off voltage of a MESFET. What do you mean by the threshold voltage of the device?

 3+1

8. With a neat energy-band diagram discuss how a photo-diode works. How the performance of an ordinary photo-diode improves in a PIN photo diode?

2+2

GROUP-C

Answer any one of the following question:

- 9. Prove that in case of a MESFET the drain conductance in the linear region is equal to the trans conductance in the saturation region. 8
- 10. Derive the expression of diode current of a metal-semi conductor diode using thermionic emission theory.

[Internal Assessment - 05 Marks]