M.Sc. 1st Semester Examination, 2023 ELECTRONICS

PAPER - ELC-101(U1&U2)

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

PAPER - ELC-101 U1

(Mathematical Methods)

GROUP - A

Answer any two questions:

 2×2

1. State the convolution theorem in Laplace transforms.

(Turn Over)

- 2. What is inner product in vector space?
- 3. Define unitary matrix with an example. 1+1
- 4. Does Laplace transform exist for all functions? Explain with example.

GROUP - B

Answer any two questions:

 4×2

- 5. Show that $u = x^3 3y^2x$ is harmonic and find its conjugate function. 2+2
- 6. State and explain Parseval's relation for Fourier transforms. Discuss its implications for signal processing and analysis.
 2+2
- 7. Form a set of three orthonormal vectors by the Gram-Schmidt process using the input vectors in the order given below:

 4

$$C_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, C_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, C_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

8. Find Fourier sine transform of

$$f(x) = \frac{e^{-ax}}{x}; \ a > 0.$$

GROUP - C

Answer any one question:

 8×1

- 9. (i) State Cauchy's integral theorem and apply Cauchy-Riemann condition to prove it.
 - (ii) Expand $\frac{1}{1-Z}$ in Taylor's series about $Z_0 = i$. (2+4)+2
- 10.(i) If $F(t) = t^a$ and $G(t) = t^b$, a > -1, b > -1, show that the convolution F^*G is given by $F^*G = t^{a=b=1} \int_0^1 y^a (1-y)^b dy$.
 - (ii) Using partial fraction expansions, show that

$$L^{-1}\left\{\frac{s}{(s+a)(s+b)}\right\} = \frac{ae^{-at} - be^{-bt}}{a-b}; \ a \neq b$$

[Internal Assessment - 5 Marks]

PAPER - ELC-101 U2

(Computational Techniques)

GROUP - A

Answer any **two** questions: 2×2

- 1. What do you mean by symmetric round-off? 2
- 2. What are the limitations of the Newton-Raphson method?
- 3. Find the truncation error in the result of the following function for $x = \frac{1}{3}$ when first three terms are used:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!}$$

4. Define and explain the concept of a pivot element in the context of Gauss elimination.

GROUP - B

Answer any two questions:

 4×2

- 5. If $u = \frac{3xy^2}{z^3}$ and errors in x,y,z are 0.001, compute the relative maximum error in u when x = y = z = 1.
- 6. Derive the iterative formula for Regula-Falsi method to find a root of an equation f(x) = 0. 4
- 7. Establish Newton's forward interpolation formula.
- 8. Describe bisection method to solve the equation f(x) = 0, when a root lies between a and b. 4

GROUP - C

Answer any one question:

 8×1

9. Compute y(0.3) from the equation

$$\frac{dy}{dx} = x - y, y(0) = 1,$$

taking h = 0.1, by 4th order Runge-Kutta method, correct to five decimal places.

10. Evaluate approximately by trapezoidal rule,

the integral $\int_0^1 (4x-3x^2)dx$, by taking n=10.

Also compute the exact integral and find the absolute error and the relative error.

4 + 2 + 1 + 1

[Internal Assessment - 5 Marks]