M.Sc. 1st Semester Examination, 2023 COMPUTER SCIENCE

PAPER - COS-104

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

GROUP-A

- 1. Answer any four from the following questions:
 - 2×4
 - (a) What is Triple Modular Redundancy (TMR)?
 - (b) What do you understand by 'safety critical system'?

- (c) What is the difference beween hard and soft real time tasks?
- (d) Give one examples for each of SS and SR deadline constraints.
- (e) What is the difference between aperiodic and sporadic tasks?
- (f) Consider a real-time sysem in which tasks are scheduled using foreground-background scheduling. There is only one periodic foreground task T_f : ($\phi_f = 0$, $p_f = 50$ msec, $d_f = 100$ msec) and the background task be $T_B = (e_B = 1000$ msec) Compute the completion time for background task.
- (g) What do you understand by scheduling point of a task scheduling algorithm?
- (h) What do you understand by preemptive and non-pre-emptive tasks?

GROUP-B

- 2. Answer any four from the following questions:
 - (a) A cyclic schedular is to be used to run the following set of periodic tasks on a uniprocessor: $T_1 = (e_1 = 1, p_1 = 4)$, $T_2 = (e_2 = 1, p_2 = 5)$, $T_3 = (e_3 = 1, p_3 = 20)$, $T_4 = (e_4 = 2, p_4 = 20)$. Find an appropriate frame size meeting the required constraints.
 - (b) (i) Explain why hardware fault tolerance is easier to achieve compared to software fault-tolerance.
 - (ii) What are the main technique available to achieve to software fault-tolerance? 2+2
 - (c) Explain how PCP is able to avoid deadlock, unbounded priority inversion and chain blockings.

4

- (d) Explain using an appropriate example as to why a critical resource can get corrupted if the task using it is preempted, and then another task is granted use of the resource.
- (e) Consider the following set of periodic real-time tasks: $T_1 = (e_1 = 10 \text{ msec}, p_1 = 50 \text{ msec})$, $T_2 = (e_2 = 25 \text{ msec}, p_2 = 150 \text{ msec})$, $T_3 = (e_3 = 50 \text{ msec}, p_3 = 200 \text{ msec})$. Assume that the self suspension times of T_1 , T_2 and T_3 are 3 msec, 3 msec and 5 msec, respectively. Determine whether the tasks would meet their respective deadlines, if scheduling using RMA.
- (f) Briefly indicate how Unix dynamically recomputes task priority values. Why is such recomputation of task priorities required?

 2+2
- (g) What do you understand by jitter associated with a periodic task? How are these jitters caused? 2+2

(h) Consider the following set of three independent real-time periodic tasks.

Task	Start time (mSec)	Processing time (mSec)		Deadline m(Sec)
<i>T</i> 1	20	25	150	100
<i>T</i> 2	40	10	50	30
<i>T</i> 3	60	50	200	150

Suppose a cyclic schedular is to be used to schedule the task set. What is the major cycle of the set? Suggest a suitable frame size.

GROUP-C

- 3. Answer any *two* from the following questions:
 - (a) Consider the following set of three periodic real-time tasks: $T_1 = (10, 20)$, $(T_2 = (15, 60), T_3 = (20, 120)$ to be run on uniprocessor. Determine whether the task set is schedulable under RMA.

8

- (b) Discuss briefly various features of the Real-Time operating system.
- (c) (i) Why is it necessary to synchronize the clocks in the distributed real-time system?
 - (ii) Explain why algorithms that can be used satisfactorily to schedule real-time tasks on microprocessors often are not satisfactory to schedule real-time tasks on distributed systems and vice-versa?
- (d) A set of hard real-time periodic tasks need to be scheduled on a uniprocessor using RMA. The following table contains the details of these periodic tasks and their use of three non-preemptive shared resource. Can the tasks T2 and T3 meet their respective deadlines when priority ceiling protocol (PCP) is used for resources scheduling?

Task	p_{i}	e,	R_{1}	R_2	R_3
<i>T</i> 1	400	30	15	20	-
T2	200	25	_	20	10
<i>T</i> 3	300	40			
<i>T</i> 4	250	35	10	10	10
<i>T</i> 5	450	50	-	-	5

 p_i indicates the period of the task T_i and e_i indicates its computation time. The period of each task is the same as its deadline. The entries in the R_i columns indicate the time duration for which a task needs the named resource in non-preemptive mode. Assume that after a task releases a resource, it does not acquire the same or any other resource.

[Internal Assessment - 10 Marks]