M.Sc. Part-I Examination, 2013

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-IV(A&B)

Full Marks: 100

Time: 4 hours

The figures in the right-hand margin indicate marks

GROUP - A ANTO SHOOP

(Principle of Mechanics)

[Marks : 50]

Answer Q. No. 1 and any three questions from the rest

- 1. Answer any one question:
 - (a) State and prove conservation law of linear momentum.
 - (b) Define generalized coordinates with example.

(Turn Over)

Total Pages-8

8

8

- 2. (a) What do you mean by Euler angles? Suppose a rigid body is rotating about a fixed point. Deduce the relation between the coordinates (x, y, z) (in fixed set of axes) and (x', y', z') (in rotating set of axes) in terms of Euler angles).
 - (b) Deduce Euler's dynamical equations when a rigid body is rotating about a fixed point.
- 3. (a) Deduce Lagrange's equations of motion for a conservative unconnected holonomic system.
 - (b) If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange's equation, show by direct substitution that

$$L' = L + \frac{dF(q_1, q_2, ..., q_n, t)}{dt}$$

also satisfies Lagrange's equations where F is arry arbitrary but differentiable function of its arguments.

(c) The Hamiltonian

$$H = p_1 q_1 - p_2 q_2 - a q_1^2 - b q_2^2,$$

solves the Hamilton's equations of motion and prove that $(p_2 - bq_2)/q_1 = \text{constant}$ and $q_2q_2 = \text{constant}$, a, b are constants p_1, p_2, q_1, q_2 are generalised momenta and coordinates.

4. (a) Prove that

$$J = \int_{x_0}^{x_1} F(y, y', x) dx$$

will be minimum only when

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0.$$

- (b) Define Poisson bracket. State and prove Jacobi's identity.
- (c) If H is the Hamiltonian and f is any function depending on position, momenta and time show that

show that
$$\frac{df}{dt} = \frac{\partial f}{\partial t} + [f, H].$$

5. (a) Discuss a method to determine the eigen frequencies and normal modes of small oscillation of a dynamical system.

8

(Continued)

(b) A top has an axis of symmetry OG, where G is the centre of mass, and it spins with the end O on a rough horizontal table. The mass of the top is m and its moment of inertia about OG and any axis through O perpendicular to OG are C and A respectively. Initially, OG is vertical and the top is set spinning with spin n about its axis. It is then slightly displaced. If in the subsequent motion θ is the angle OG makes with the vertical and φ is the angular velocity about the vertical, show that

$$A \dot{\varphi} \sin^2 \theta = Cn(1 - \cos \theta)$$
 and
 $A (\dot{\varphi}^2 \sin^2 \theta + \dot{\theta}^2) = 2mgh(1 - \cos \theta)$

where OG = h.

- 6. (a) Derive the Lorentz transformation equations. 8
 - (b) Under Lorentz transformation, show that the expression $x^2 + y^2 + z^2 c^2t^2$ is invariant.

(c) Show that the transformation

$$Q = \log(\sin p/q), P = q \cot p$$

is canonical. Find the generating function G(q, Q).

GROUP - B

(Partial Differential Equation)

[Marks : 50]

Answer Q. No. 1 and any three questions from the rest

1. What do you mean by a Partial Differential Equations (PDE)? Give an example.

Or

Define a semi-linear and a quasi-linear partial differential equation.

· 2. (a) Show that Lagrange equation

$$(2z - y)p + (x + z)q + (2x + y) = 0$$

DECINAL MATHAWAS

2

has the complete integral $x^2 + y^2 + z^2 = \alpha(x - 2y - z) + \beta$, a family of sphere. Find the envelope of the one parameter family by substituting $\beta = 1 - \frac{3\alpha^2}{2}$ and show that the envelope is a part of the given integral.

(b) Derive Charpit's method to solve a non-linear PDE of order one for two independent variables.

Answer O. No. 1 and any three ouestions

3. (a) Solve the partial differential equation

where
$$D = \frac{\partial}{\partial x}$$
, $D' = \frac{\partial}{\partial y}$.

(b) Reduce the partial differential equation to its canonical form

$$(n-1)^2 z_{xx} - y^{2n} z_{yy} = ny^{2n-1} z_y,$$

n is any positive integer.

of a stretched string of length 'l' with fixed end points.

(b) A tightly stretched string with fixed end points

4. (a) Derive the equation of transverse vibration

$$y(x,0) = a\sin^3\frac{\pi x}{l}.$$

at x = 0 and x = l is initially in a position

8

8

8

If it is released from rest from this position find the displacement y at a distance x from one end at any time t.

- 5. (a) If a region G is two dimensional and simply -connected, show that it is possible to reduce Neumann problem to Dirichlet problem.
 - (b) Find the function $\phi(x, y)$ which satisfies Laplace equation $\phi_{xx} + \phi_{yy} = 0$ in the rectangle 0 < x < a, 0 < y < b and which also satisfies the boundary conditions $\phi(x, 0) = 0$, $\phi(x, b) = 0$, $\phi(0, y) = 0$, $\phi(a, y) = f(y)$, where f(y) is a given function of y for 0 < y < b.

(Continued)

8

DDE/I/A.MATH/IV/13

- 6. (a) Solve the diffusion equation $\theta_t = \theta_{xx}$ in the range $0 \le x \le 2\pi$, $t \ge 0$ subject to the following conditions $\theta(x, 0) = \sin^3 x$ for $0 \le x \le 2\pi$, $\theta(0, t) = \theta(2\pi, t) = 0 \quad \forall t \ge 0$.
 - (b) Solve the initial value problem described by the inhomogeneous wave equation

$$u_{tt} - c^2 u_{xx} = f(x, t)$$

aconneurod, show that it is possible to

Laplace equation $(\phi_n + \phi_n = 0)$ in the rectangle $0 \le x \le a$, $0 \le y \le b$ and which also satisfies the boundary conditions $\phi(x, 0) = 0$, $\phi(x, b) = 0$, $\phi(0, y) = 0$, $\phi(a, y) = f(y)$, where f(y) is a given function of y for $0 \le y \le b$.

subject to the initial conditions $u(x, 0) = \phi_0(x), \ u_i(x, 0) = \phi_1(x).$ 8