Total Pages-17 PG/IIIS/CHEM/302/22(CCAE)

M.Sc. 3rd Semester Examination, 2022 CHEMISTRY

(Inorganic Special / Organic Special / Physical Special)

PAPER - CEM-302(CCAE)

Full Marks: 40

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

(Inorganic Special)

GROUP-A(a)

Answer any two of the following questions: 2×2

1. What do you mean by "vibronic coupling"?

(Turn Over)

- 2. Write the all possible term symbols for d^2 electronic configuration. How these terms will split in presence of octahedral crystal field?
- 3. Explain why the intensity of $A_2 \rightarrow T_2$ transition around 100 times less than the intensity of $A_2 \rightarrow T_1$ transition in $[CoCl_4]^{2-}$ anion. Given below the character table for T_d point group.

T_d	E	8C ₃	$3C_2$	6S ₄	$6\sigma_d$		
A_1	1	1	1	1	1	3	$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1	s.	
E	2	· -1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xz, yz, xy)

GROUP-A(b)

Answer any two of the following questions: 4×2

4. What do you mean by "exclusion rule"? Show that this rule is applicable for ML, octahedral

compound. (Given below the character table for O_h point group). 1+3

G,	E	8C,	6C ₂	6C,	$3C_2 = C_4^2$	i	654	854	304	604		
Ate	1	i	1	ī	1	1	<u> </u>	1	1	1		x ² +y ² +z ²
A ₂	1	1	-1	-1	1	ı	-1	J	1	-1		
E,	2	-1	0	0	2	2	0	-1	2	. 0		(22-4-52, 32-52)
The	3	0	- I	1	~1	3	ı	0	-I	-i	(R_{s}, R_{p}, R_{c})	
Tag	3	0	1	-1	-1	3	-1	0	-1	1		(xy, 12, yz)
An	1	1	i	1	1	-1	-1	- i	-1	-i		or analysis states for
As	1	1	-1	-I	1	-1	1	-1	-1	1		
E.	2	-1	0	0	2	-2	0	1	-2	0		
Tie	3	0	-1	1	-1	-3	-1	0	1	ı	(x, y, z)	l
Tax	3	0	1	-1	-1	-3	1	0	1	-1		

5. With the help of group theory determine the symmetries of the group of orbitals of H-atoms which are effective for σ-bond formation in NH₃ molecule. Write the appropriate SALCs for these symmetries. Construct a qualitative σ-bonding molecular orbital energy level diagram for NH₃ molecule. (Given below the character table for C_{3v} point group).

			30,		
A_1	1-	1	1	z	$x^2 + y^2, z^2$
A_2	1	1	-1	R_{z}	Ð
E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2 + y^2, z^2)$ $(x^2 - y^2, xy)(xz, yz)$

6. Establish the relation

$$\chi(\alpha) = \frac{\sin\left(l + \frac{1}{2}\right)\alpha}{\sin\left(\frac{\alpha}{2}\right)} (\alpha \neq 0)$$

where the terms have usual significance.

Answer any one of the following questions: $8 \times$

7. For trans-dichloro bis-ethylenediamine cobalt(III) complex the ground state is ${}^{1}A_{1g}$ and excited singlet states are ${}^{1}A_{2g}$, ${}^{1}E_{g}$ and ${}^{1}B_{2g}$. Show that ${}^{1}A_{1g} \rightarrow {}^{1}A_{2g}$ transition is vibronically allowed with

(x, y) polarized light but forbidden with z-polarized light.

D48	E	2C4	C_2	2C2'	2C2"	i	2S ₄	o _k '	$2\sigma_v$	$2\sigma_d$		
Aig	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
Azg	1	1	1	-1	-1	1	1	1	-1	- I	R _z	
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1	ŀ	x^2-y^2
B_{2g}	I	-1	1.	1	1	1	-1	1	-1	1		ху
E,	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
Air	ı	I	1	1	1	-1	-1	-1	-1	-1		
A2E	I	1	1	-1	-1	-1	— <u>I</u>	-1	1	1	Z	
Biu	l	I	1	I	-1	-1	1	-I	-1	. 1		
B ₂₄	1	-1	1	-1	I	-1	l	-1	1	-1		
E.	2	0	-2	0	0	-2	0	2	0	0	(x,y)	

8. Establish a correlation diagram for a d^2 ion in an octahedral environment. (Use the character table for O_k point group given in Question No. 4).

GROUP-B(a)

Answer any two of the following questions: 2×2

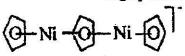
9. Explain the 'β-hydrogen elimination' reaction in the light of organometallic chemistry.

8

10. How ferrocene boronic acid can be synthesized from ferrocene?

11. Comment on the magnetic behaviour of manganocene.

GROUP-B(b)


Answer any two of the following questions: 4×2

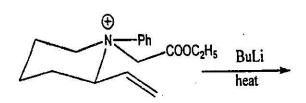
- 12. Discuss the catalytic cycle of Rh-catalyzed 'Monsanto acetic acid synthesis'.
- 13. What is oxidative addition reaction? Maintain the important features for this reaction. Write down the essential requirements for this type of reaction. 1+2+1
- 14. Discuss the catalytic cycle for the hydroformylation using HCo(CO)₄ as catalyst.

GROUP-B(c)

Answer any one of the following questions: 8×1

15. (a) Starting from nickelocene, how will you synthesize the following species?

- (b) What is orthometallation reaction? Write an example of such reaction.
- (c) Write down the structure of two hydrogenation catalysts rather than Wilkinson's catalyst.
- (d) Write explanatory note on 'alkyl/hydrogen migration'. 2+2+2+2
- 16. Write down the complete reaction(s) for the production of CH₃CHO from C₂H₄ by Wacker process. Write the rate equation for this process. Indicating role of CuCl₂, discuss the catalytic cycle of Wacker process.
 1+1+6


(Organic Special)

GROUP -- A

Answer any four questions:

 2×4

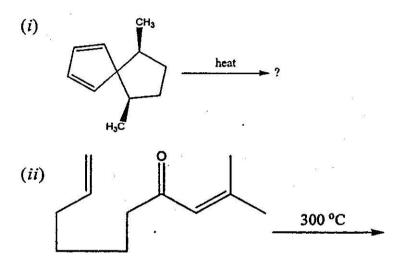
- 1. Distinguish between Fischer and Schrok carbenes with suitable examples.
- 2. What do you mean by Hammett substituent constant, σ, (sigma)?
- 3. What do you mean by working and auxiliary ligands? Illustrate with suitable examples.
- The displacement of iodide from EtI by phenoxide anions has a ρ value of exactly -1.0 —
 Justify the observation.
- 5. Using PMO method show that suprafacial [1, 3] sigmatropic rearrangement is photochemically allowed.
- 6. Identify the products of the following reaction.

GROUP - B

Answer any four questions:

 4×4

- 7. What do you mean by σ^+ and σ^- values? Explain with suitable examples.
- 8. What will you account for the Hammett ρ values in the following reactions: 2+2


(i) OEt
$$\rho = +0.5$$
 NaOH

(ii)
$$\bigoplus_{\substack{NO_2 \\ r.d.s. \\ \rho = -6.4}} NO_2$$

9. What is Petasis reagent? How is it synthesized? Discuss the synthetic utility of this reagent.

1+1+2

10. Predict the product(s) of the following reactions with plausible mechanism: 2 + 2

- 11. Usong FMO approach show that [1, 5] sigmatropic rearrangements are thermally allowed and photochemically forbidden.
- 12. Draw the catalytic cycle for Heck reaction.

 Discuss the regionselectivity of Heck reaction with respect to electron donating and electron attracting substituents.

GROUP - C

Answer	anv	two	auest	ions	•
			44601		•

 8×2

5

- 13. (a) Discuss the nature of the Hammett plot for the hydrolysis of ArCOOR in 99.9% H₂SO₄.
 - (b) Explain the Yukawa-Tsuno equation with a suitable example.
- 14. (a) What is ene reaction? Give an example of a
 Lewis acid catalyzed ene reaction. Using
 FMO approach show that these reactions
 are symmetry allowed.
 1 + 1 + 2
 - (b) What is meant by "chelation control" in Heck reaction? How "chelation control" vs "ligand control" influences the regioselectivity of the product in Heck reaction? Explain with proper examples.

4

15. Identify the products (A, B, C and D for the following reaction. 2×4

16. What is Buchwald-Hartwig amination? Draw the catalytic cycle for this reaction. Discuss the advantages and drawbacks of this reaction. How Buchwald has diverged from Hartwig subsequently for this type of reactions? 2+2+3+1

(Physical Special)

GROUP - A

Answer any four questions of the following: 4×2

- Write down the expression of the first .order correction to wavefunction in time independent degenerate perturbation theory.
- Hamiltonian of a two-level system is given by the following matrix,

$$H_0 = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$$

Find the energy eigen values and eigen ket of each state.

- 3. Use internal coordinate system to obtain the reducible representation of H₂O.
- 4. Obtain the first order correction to ground state energy, when a perturbation, H' = Cx(C is a constant) is applied to a linear Harmonic Oscillator.
- 5. Write down the standard reduction formula used in group theory for non-linear molecules.
- 6. The irreducible representation of trans-1, 3-butadiene are A_g, B_g, A_u and B_u. Find the IR active modes of trans-1, 3-butadiene.

GROUP - B

Answer any four questions of the following: 4×4

7. Use group theoretical principle to obtain the vibrational modes of NH_3 . Following is the character table of $C_{3\nu}$ point group.

Character table for point group C_{3v}

$C_{3\nu}$	E	2C ₃	3σ,	Ва	sis comp	onents					
A_1	1	1	1	z	-	x^2+y^2,z^2	ν.				
A_2	. 1	1	-1		R_z						
E	2	-1	0	(x, y)	(R_x, R_y)	$(x^2-y^2,xy)(yz,$	xz)				

- 8. Deduce the expression of first order correction to energy using time independent degenerate perturbation theory.
- 9. Calculate the first order correction to energy of the *n*th state of Harmonic oscillator whose centre of potential has been displaced from 0 to *L*.
- 10. Describe the methodology to obtain first order correction to energy of each level for a doubly degenerate state.
- 11. A two level unperturbed system is described by the Hamiltonian.

$$H_0 = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$

Now a small perturbation is switched on and is given by,

$$V = \begin{pmatrix} a & c \\ c & d \end{pmatrix}$$

Find the second order correction to energy of each level.

12. Describe a scheme to diagonalize the matrix form of the following equation in a *n*-dimentional space.

$$HC = \lambda C$$
.

Answer any two questions of the following: 8×2

13. Describe the procedure and hence obtain the state of hybridization of central atom using group theoretical principle.

Character table for T_d point group

T_d	E	8C ₃	$3C_2$	6 <i>S</i> ₄	$6\sigma_d$		er .
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	. 1	-1	-1		**
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_{1}	3	0	-1	1	-1	(R_x, R_y, R_z)	* *
T_2	3	0	-1	-1	1	(x, y, z)	(xz, yz, xy)

- 14. Use the first order degenerate perturbation theory to obtain the splitting of spectral line (n = 1) to n = 2 transition) of Hydrogen atom in presence of an external electric field in the Z direction.
- 15. Find the matrix representation of angular momentum operator J^2 and J_z for j = 3/2 state.
- 16. Find the matrix representation of operator J_x for j=1 level.