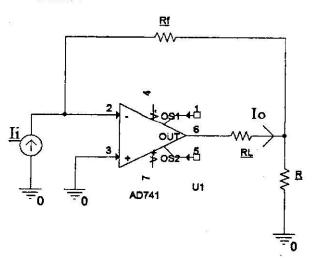
2022

1st Semester Examination PHYSICS

Paper: PHYS 104

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.


Paper: 104.1

(Analog Electronics)

(Attempt Q1, Q2 and any one from the rest)

- 1. Answer any *two* of the following questions: $2 \times 2 = 4$
 - (a) What is fading in radio waves?
 - (b) Define the terms : Tropospheric Waves, Sky wave propagation.
 - (c) What is vestigial side band modulation and where it is used?
 - (d) What is duplexer and where it is used?

- 2. Answer any *two* of the following questions: $4 \times 2 = 8$
 - (a) Draw the circuit diagram of a balanced modulator and explain with necessary derivation how it can generate Double Side Band-SC signal.
 - (b) Derive radar range equation.
 - (c) Find out the expression for I_0/I_i in the following circuit:

- (d) With necessary block diagram, explain the operation of a superheterodyne AM radio receiver. Write the value of intermediate frequency used in AM receiver.
- (a) Suppose a sinusoidal carrier signal of frequency ω_c is frequency modulated by a sinusoidal modulating signal of frequency ω_m. Deriver the expression for the generated FM signal and hence find out the theoretical bandwidth of FM signal.

- (b) State Carson's rule of thumb for the determination of bandwidth of FM signal.
- (c) Explain any method of generation of FM signal.

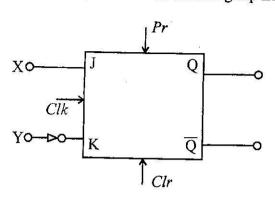
4+1+3

- 4. (a) Derive the expression for the refractive index of ionosphere for radio waves, assuming it has a constant ionization density and hence show that it is less than 1. Hence define critical frequency in case of radio wave propagation through ionosphere.
 - (b) Explain how the distance of a fixed target can be found by using two frequency continuous wave radar.

 5+3

Paper: 104.2

(Digital Electronics)


1. Answer any two bits:

 $2 \times 2 = 4$

- (a) Draw the circuit of 3-bit twisted ring counter and give the output states starting from 000.
- (b) In a 4-bit digital system the input is BCD number and output goes high only when the input-equivalent number is a prime one. Right down the truth table.
- (c) A 12 kHz clock pulse is given to a MOD-6 counter. Write down the different frequencies coming out from the different outputs of the counter.

P.T.O.

(d) Give the excitation table of the following flip-flop:

2. Answer any two bits:

 $4 \times 2 = 8$

- (a) What is a stable multivibrator? Draw the circuit to produce a square wave of 5 kHz with 70% duty cycle.
- (b) Solve the following equation by K' map;

$$Y = \sum m(0,2,10,16,18) + d(26,27)$$

- (c) Convert a T FF into a DFF.
- (d) Give the circuit of 2-bit bidirectional shift register.4 KHz and 8 KHz signals are applied to a NAND gate. Draw the output waveform.
- 3. Answer any one bit:

 $8 \times 1 = 8$

(a) (i) Draw the circuit of a 4 bit synchrounous down counter. Write down the state diagram of this counter.

- (ii) Design a circuit for magnitude comparator of two binary signals A(A₁A₀) and B(B₁B₀).

 4+1+3
- (b) (i) What do you mean by Universal register? Give the circuit of a 2 bit Universal register and indicate the different mode of action.
 - (ii) How can you convert a parallel signal into a serial signal using register? 1+5+2