2022

1st Semester Examination PHYSICS

Paper: PHYS 102

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Paper: 102.1

(Quantum Mechanics-I)

1. Answer any two of the following:

 $2 \times 2 = 4$

- (a) Given that $|\psi_q\rangle$ is an eigenstate of operator \hat{Q} such that $\hat{Q}|\psi_q\rangle = q|\psi_q\rangle$. An operator \hat{C} acts on $|\psi_q\rangle$ as $\hat{C}|\psi_q\rangle = |\psi_{-q}\rangle$. Is $|\psi_q\rangle$ an eigenstate of the operator $\hat{C}\hat{Q}+\hat{Q}\hat{C}$? If so find the eigenvalue.
- (b) The space translation operator is given by $\hat{T}(\Delta x) = \exp[-i\Delta x.\hat{p}/\hbar]$. By considering how $\langle \psi | \hat{p}/\psi \rangle$, changes under a small translation Δx i.e. $\langle \psi | T^{\dagger} \hat{p} T | \psi \rangle$, show that all components of the momentum operator commute with each other: $[\hat{p}_i, \hat{p}_j] = 0$.

P.T.O.

(c) Consider a particle in a one dimensional infinite square well with $0 \le x \le L$. If the wave function of the particle is

$$\psi(x,0) = \frac{1}{\sqrt{L}} \sin\left(\frac{\pi x}{L}\right) \cos\left(\frac{2\pi x}{L}\right).$$

Compute $\psi(x,t)$ and determine if it is a stationary state.

(d) For a one dimensional harmonic oscillator using the ladder operators, \hat{a} and \hat{a}^{\dagger} compute $\langle n' | \hat{x}^2 | n \rangle$ and write down the corresponding matrix. Given: $\overline{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger})$.

2. Answer any *two* of the following questions:
$$4 \times 2 = 8$$

- (a) Consider the spin operator $\hat{S}_{\vec{n}} = \hat{\vec{S}}.\vec{n}$, where $\hat{S}_i = \frac{\hbar}{2}\sigma_i$. σ_i are Pauli matrices and \vec{n} is a unit vector whose polar, azimuthal angles are θ and ϕ respectively. Find the unitary matrix U such that $U\hat{S}.U^{\dagger} = \hat{S}_{\vec{n}}$.
- (b) Consider the following state:

$$|\psi\rangle = N \sum_{n=0}^{\infty} (1/\sqrt{2})^n |n\rangle$$

where $|n\rangle$ is the normalized *n*-th excited state of a one dimensional harmonic oscillator with energy eigenvalue $E_n = \hbar\omega(n+1/2)$. Find the normalization

N assuming that $|\psi\rangle$ is normalized and the expectation value of the Hamiltonian $\langle\psi|H|\psi\rangle$.

- (c) The Hamiltonian describing the dynamics of a particle of mass m in one dimension is given by $\hat{H} = \frac{\hat{p}^2}{2m} F\hat{x} \text{ where } F \text{ is a constant. Find the commutator } \left[\hat{x}(t), \hat{x}(0)\right].$
- (d) Consider a three state system with orthonormal basis states $\{|1\rangle, |2\rangle$ and $|3\rangle\}$. The action of an operator \hat{A} on the states is given by $\hat{A}|1\rangle = |2\rangle, \hat{A}|2\rangle = |3\rangle$ and $\hat{A}|3\rangle = |1\rangle$. Further define an operator \hat{H} as $\hat{H} = -E_0(\hat{A} + \hat{A}^{\dagger})$. Suppose that the system is in the state $|2\rangle$ and \hat{H} is measured, what are the possible values one obtains and with what probabilities?
- 3. Answer any *one* of the following: 8×1=8
 - (a) (i) Consider a one-dimensional simple harmonic oscillator with the Hamiltonian $\hat{H} = \hat{p}^2/(2m) + (1/2)m\omega^2\hat{x}^2.$ Using the Heisenberg equation find the time dependence of the operators $\hat{x}(t)$ and $\hat{p}(t)$.

(ii) Now consider the following state:

$$|\Psi(0)\rangle = \frac{1}{\sqrt{3}}(|0\rangle + |1\rangle + |2\rangle)$$

where $|n\rangle$ is the normalized n-th excited state of a one dimensional harmonic oscillator with energy eigenvalue $E_n = \hbar\omega(n+1/2)$. Suppose the system is evolved in time using the Hamiltonian for a one dimensional harmonic oscillator. Find the expectation value $\langle \hat{x} \rangle (t)$ using both the Schrödinger and Heisenberg pictures.

- (b) Let $|+\rangle$ and $|-\rangle$ be spin 1/2 eigenstates of the operator \hat{S}_z with eigenvalues $\pm \hbar/2$. A Hamilatonian operator is given by $\hat{H} = \hbar \omega \hat{S}_x$ where ω is a real constant.
 - (i) Suppose the system is known to be in state
 |+| at t = 0, what is the probability for finding the system in the states |±| for t > 0?
 - (ii) Now consider the operator \hat{S}_y . Find $\langle \hat{S}_y \rangle (t)$ using both the Schrödinger and Heisenberg pictures.

Paper: 102.2

(Condensed Matter Physics-I)

1. Answer any two questions:

 $2 \times 2 = 4$

- (a) Show through matrix representation the symmetry elements introduced in point group $\frac{2}{m}$.
- (b) Draw Ewald sphere and hence find Bragg's Differention condition.
- (c) Show that number of possible modes in a lattice in equal to the number of mobile atom. Assume staionary boundary conditions to prove it.
- (d) The E-k relation in a particular solid is given by $E = Ak^2 + Bk^3$ where A are positive constants. Find the wave vectors for which electron group velocity is zero. Find the phase velocity of electron waves as well.

2. Answer any two questions:

 $4\times2=8$

- (a) Describe in details the screw symmetry elements. What is symmorphic space group? 3+1
- (b) Express structure factor in terms of fractional coordinates for BCC lattice and show the condition for systematic absence of intensity. 2+2

- (c) Density of states for a linear chain of atom becomes infinite at a certain condition. Find the condition at which this occur. What is Van Hove singularity? 3+1
- (d) According to empty lattice approximation find the energy for first four bands for a simple cubic lattice in [100].

3. Answer any one question:

 $8 \times 1 = 8$

- (a) Derive Laue equation assuming scattering of X Ray from a crystal. Also express Lane equation introducing reciprocal lattice vector.
- (b) What is the physical origin of energy gap? Find an expression of energy gap on the basis of free electron approximation. Find the band width of a simple cubic lattice along [III] direction following Tight Binding Approximation? 2+4+2