Total Pages: 5

2022

1st Semester Examination PHYSICS

Paper: PHYS 101

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Paper: 101.1

1. Answer any two:

 $2 \times 2 = 4$

- (a) A is a non-Hermitian operator, show that $(A + A^{+})$ and $i(A A^{+})$ are Hermitian.
- (b) Show that a real matrix that is not symmetric can not be diagonalized by an orthogonal or unitary transformation.
- (c) Prove that $\in_{ipq} \in_{jpq} = 2\delta_{ij}$.
- (d) State and prove Cauchy's integral theorem.
- 2. Answer any two:

 $4\times2=8$

(a) $f(z) = u(x, y) + iv(x_1y)$

where u is the velocity potential and v is the stream function $\nabla = \overline{\nabla} u$

Show that $\vec{\nabla}.\vec{\nabla} = 0$ and $\vec{\nabla} \times \vec{\nabla} = 0$.

P.T.O.

(b) Prove that
$$\left\{ p \atop pq \right\} = \frac{\partial}{\partial x^q} \log \sqrt{g}$$

where g is the determinant of the metric tensor.

(c)
$$A = \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix}$$

Find A^{10} using caley Hamilton's theorem.

(d) If the two-index Levicivita symbol ∈_{ij} is pseudotensor, show that it is invariant under orthogonal similarity transformation.

3. Answer any one:

8×1=8

$$\phi_i' = \phi_i \cos \theta - \phi_j \sin \theta$$

$$\phi_i' = \phi_i \sin \theta + \phi_i \cos \theta$$

Then
$$a'_{ij} = 0$$
 if $\tan 2\theta = \frac{2a_{ij}}{a_{ij} - a_{ij}}$

(ii) Evaluate
$$\int_{0}^{\infty} \frac{\ln(1+x^2)}{(1+x^2)} dx$$
 by using Residue-theorem.

(b) (i) If
$$A_k = \frac{1}{2} \in_{ijk} B^{ij}$$
 and $B^{ij} = -B^{ji}$

Show that $B^{mn} = \epsilon^{mnk} A_k$

(ii) Evaluate $\int_{3+4i}^{4-3i} (4z^2 - 3iz) dz$ for an arc on the circle |z| = 5. 4+4=8

Paper: 101.2

(Classical Mechanics)

Answer any two of the following:

1. Prove that the dynamics of a particle governed by the Lagrangian $L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2 - kx\dot{x}t$ describes a free particle.

- 2. Find the value of Poisson bracket $[|\vec{r}|, |\vec{p}|]$.
- 3. The Lagrangian for a particle of mass m at a point r moving with a velocity v is given by L = \frac{1}{2}mv^2 + c\overline{r}.\overline{v} v(r), where v(r) is a potential and c is a constant. Find the Hamiltonian of the system consider p, as the canonial momentum.
- Derive Hamilton's canonical equation in terms of the Poisson bracket.

 $2 \times 2 = 4$

Answer any two of the following:

 $4 \times 2 = 8$

5. (a) Show that
$$P_k = \frac{\partial F_1}{\partial q_k}$$
 and $P_k = -\frac{\partial F_1}{\partial Q_k}$

- (b) A mechanical system is described by the Hamiltonian $H(q,p) = \frac{p^2}{2m} + \frac{1}{2}m\omega^2q^2$. As a result of the canonical transformation generated by $F(q,Q) = -\frac{Q}{q}$, find the Hamiltonian in the new coordinate Q and momenta P.
- 6. Find the Poisson bracket between θ and $\dot{\theta}$, $\left[\theta, \dot{\theta}\right]$ for $L = ml^2 \dot{\theta}^2 mgl(1 \cos\theta).$
- Prove that Poisson's bracket remains invariant under the canonical transformation.
- 8. A Particle of mass m falls a given distance z_0 in time $t_0 = \sqrt{2z_0/g}$ and the distance travelled in time t is given by $z = at + bt^2$, where a and b are such that the time t_0 is always the same. Show that the integration $\int_0^{t_0} Ldt$ is an extremum for real values of the coefficient only when a = 0 and b = g/2.

Answer any *one* of the following: $8 \times 1 = 8$

9. (a) Prove that $\frac{du}{dt} = [u, H] + \frac{\partial u}{\partial t}$.

(b) The Lagrangian of a system moving in three dimensions is

$$L = \frac{1}{2}m\dot{x}^2 + m(\dot{y}^2 + \dot{z}^2) - \frac{1}{2}kx^2 - \frac{1}{2}k(y+z)^2$$

assuming
$$L_x - yp_z - zp_y$$
 determine $\frac{dL_x}{dt}$. 3+5

10. What is the action angle variable? Find out the frequency of a linear harmonic oscillator using the action-angle variable method. Starting from the time-dependent Schrödinger equation, obtain the Hamilton-Jacobi equation.

2+3+3