2022

MCA

2nd Semester Examination

ADVANCED COMPUTER ARCHITECTURE

PAPER—MCA-201

Full Marks: 100
Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any five questions:

5×2

(a) What is the difference between asynchronous and synchronous pipeline?

(Turn Over)

- (b) What is Von Neumann bottleneck?
- (c) State four features of RISC.
- (d) What is Flynn's classification of computer?
- (e) Compare write-through and write-back policy.
- (f) Distinguish between logical and arithmetic shift operations.
- (g) What is vector processor?
- (h) What is reservation table in pipeline?

Group-B

Answer any four questions.

4×15

- 2. (a) What is pipelining?
 - (b) Determine clock period of a 3-stage linear pipeline unit where stage delays of three stages are 5 ns, 10 ns and 7 ns and latch delay is 2 ns.

- (c) Explain different type of data hazards.
- (d) How can we reduce control hazard?
- 3. (a) Find the maximum efficiency of a k-stage pipeline unit.
 - (b) Consider a 4-stage pipeline processor with clock rate of 5 MHz. Obtain the clock period. Calculate speed up, efficiency and throughput for 1000 instructions. 5+(2+3+3+2)
- 4. (a) Compare Von Neumann and Harvard architecture.
 - (b) Explain micro programmed control unit with diagram.
 - (c) Explain the roles of device interface and driver.
 - (d) Distinguish between RISC and CISC.
- 3+5+4+3

- 5. (a) Explain SIMD architecture.
 - (b) Explain NUMA model of multiprocessor.
 - (c) What is the difference between NUMA and COMA model of multiprocessor? 6+5+4
- 6. (a) Briefly explain hierarchical memory organization.
 - (b) Explain inclusion, coherence, locality of reference properties of memory hierarchy.

6+(3+3+3)

- 7. (a) Explain the terms: Hit ratio, Access frequency and average access time.
 - (b) How can we determine the cost of a memory hierarchy?
 - (c) A three level memory system having cache access time of 15 ns, disk access time of 80 ns has a cache hit ratio of 0.96 and main memory hit ratio of 0.9. What should be the main memory access time to achieve average access time of 25 ns?

 6+3+6

8. Consider the following reservation table of a nonlinear pipeline processor for function P:

10 11	28	—Clock→							
		1	2	3	4	5	6	7	8
ei ei	s_1	P					Р		P
Stages	S_2		P		P				
# #	S ₃	13		P	\$18.00 81	P		P	1

- (a) Find out all forbidden and non-forbidden latencies.
- (b) Obtain the initial collision vector.
 - (c) Draw state transition diagram.
 - (d) List all simple and greedy cycles.
 - (e) Calculate minimal average latency.

4+2+5+2+2

- 9. Write short notes of the following:
 - (a) Carry propagate adder;
 - (b) Paging;

(c) Latency sequence, latency cycle and constant cycle in pipeline;

(d) Direct mapping technique.

4×5

[Internal assessment - 30]