2022

M.Sc.

4th Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND

COMPUTER PROGRAMMING

PAPER-MTM-401

FUNCTIONAL ANALYSIS

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any four questions:

4×2

- (a) Let X and Y be normed spaces. If X is finite dimensional, then show that every linear map from X to Y is continuous.
- (b) Give an example of a normal operator which is not self-adjoint.
- (c) Let X be a normed space. Show that $x_n \to x$ weakly in X does not imply $x_n \to x$ in X in general.

- (d) Show that every normed space can be embedded as a dense subspace of a Banach space.
- (e) Let X be a normed space and $\phi(x) = \phi(y)$ for every $\phi \in X^*$. Show that x = y.
- (f) Let $T \in BL(H)$ be self-adjoint. Show that $Ker(T) = Ker(T^*)$.
- 2. Answer any four questions :

4×4

(a) Let X = C[0, 1] with the supremum norm.

Consider the sequence $x_n(t) = \frac{t^n}{n^5}$, $t \in [0, 1]$.

Check whether the series $\sum_{n=1}^{\infty} x_n$ is summable in X.

- (b) Show that $\langle Ae_j, e_i \rangle = (i + j + 1)^{-1}$ for $0 \le i$, $j \le \infty$ defines a bounded operator on $l^2(N \cup \{0\})$ with $||A|| \le \pi$.
- (c) Let Y be a normed space and Y₀ be a dense subspace of Y. Suppose Z is a Banach space and T ∈ BL(Y₀, Z). Prove that there exist a unique T̃∈BL(Y, Z) such that T̃|Y₀ = T.

(d) Let $S \in BL(H)$, where H is a Hilbert space. Prove that for all $x, y \in H$,

$$\langle Sx, y \rangle = \frac{1}{4} \sum_{n=0}^{3} i^{n} \langle S(x + i^{n}y), (x + i^{n}y) \rangle.$$

- (e) Let X and Y be normed spaces and $\psi: X \to Y$ be linear. Show that ψ is continuous if and only if for every Cauchy sequence $\{x_n\}$ in X, the sequence $\{\psi(x_n)\}$ is Cauchy in Y.
- (f) Give an example to show that the completeness of the domain is an essential requirement in the Uniform Boundedness Principle.
- 3. Answer any two questions:

2×8

- (a) Let X and Y be Banach spaces and A ∈ BL(X, Y). Show that there is a constant c > 0 such that ||Ax|| ≥ c||x|| for all x ∈ X if and only if Ker(A) = {0} and Ran(A) is closed in X.
- (b) Let $F \in BL(X, Y)$ and $Z(F) = \{x \in X : F(x) = 0\}$. Define $\tilde{F}: X/Z(F) \to Y$ by $\tilde{F}(x+Z(F)) = F(x)$, $x \in X$. Show that $\|\tilde{F}\| = \|F\|$, where X, Y are normed spaces.

- 4. (a) Show that a Banach space is a Hilbert space if and only if the Parallelogram law holds.
 - (b) Let S be the Unilateral shift operator. Show that $(S^*)^n \xrightarrow{S} 0$ but not uniformly. 5+3
- 5. (a) Let P ∈ BL(H) be a non-zero projection on a Hilbert space H and ||P|| = 1. Then show that P is an orthogonal projection.
 - (b) Show that Ran(T) = Ran(T*) if T ∈ BL(H) is normal and H is a Hilbert space. 4+4
- 6. (a) Let the space l²(Z) be defined as the space of all two-sided square summable sequences and the bilateral shift is the operator W on l²(Z) defined by
 - $W(...,a_{-2},a_{-1},\hat{a}_0,a_1,a_2,...) = (...,a_{-3},a_{-2},\hat{a}_{-1},a_0,a_2,...).$
 - (i) W is unitary, and
 - (ii) the adjoint W* of W is given by
 - $W^*(...,a_{-2},a_{-1},\hat{a}_0,a_1,a_2,...) = (...,a_{-1},a_0,\hat{a}_1,a_2,a_3,...).$
 - (b) Let H be a Hilbert space and E C H. Prove that $\overline{\text{span}(E)} = E^{\perp \perp}$.

[Internal Assessment - 10]