2022

M.Sc.

2nd Semester Examination APPLIED MATHEMATICS WITH OCEANOLOGY AND

COMPUTER PROGRAMMING

PAPER-MTM-204

STATISTICAL AND NUMERICAL METHODS

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any four questions:

4×2

- (a) Define the terms numerical error and data error.
- (b) If $f(x) = 4x^6 5x$, find the percentage error in computing f(x) at x = 1 if the error in x is 0.04.

(Turn Over)

- (c) Define null hypothesis.
- (d) What is the regression curve in a set of bivariate data?
- (e) Find the position of a real root of $10^x + \sin x + 2x = 0$.
- (f) Write down the physical significance of the correlation co-efficient.
- 2. Answer any four questions:

4×4

(a) The values of function f(x) are given for certain values of x:

x 1.1 1.2 1.3 1.4

f(x) 7.831 8.728 9.697 10.744 Estimate the value of f(x) for x = 1.38 correct to

three decimal places.

(b) Find the interpolation polynomial using Lagrange's formula for the following table:

- (c) Explain the bisection method for computing a real root of an equation f(x) = 0.
- (d) Evaluate $\int \frac{x dx}{1+x^2}$ by Simpson's 1/3 rule, taking 6 equal subintervals.
- (e) Solve by Gauss-elimination method, correct up to two significant figures.

$$9x + 7y + 12z = 35$$

 $5x + 3y - 6z = 27$
 $12x - 10y + z = 15$

- (f) Find y(0.02), from the equation $\frac{dy}{dx} = 2x^3 + 3y$, y(0) = 1, taking step length h = 0.01, by Euler's method, correct up to four decimal places.
- 3. Answer any two questions: 2x8
 - (a) Deduce the equation of regression lines for a set of n bivariate data. Prove that correlation coefficient of two variables is the geometric mean of the two regression coefficients.

- (b) Compute y(0.6), from the equation $\frac{dy}{dx} = xy$, y(0) = 2, taking step length h = 0.2, by fourth order Runge-Kutta method, correct up to five decimal places.
- (c) Describe Newton-Raphson method to find a real root of the equation f(x) = 0, where f(x) is continuous function of x. Give geometrical interpretation of this method. Write down the convergence criteria of this method.
- (d) Describe Chi-square distribution and Student's t-distribution.

[Internal Assessment - 10]