2022

M.Sc.

2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND

COMPUTER PROGRAMMING

PAPER-MTM-203

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

MTM-203 (UNIT-1) ABSTRACT ALGEBRA

1. Answer any two questions:

.2×2

(a) An element x in a group G is called commutator if $x = aba^{-1}b^{-1}$ for some a, $b \in G$. By H we mean the subgroup generated by all the commutators. Show that G/H is abelian.

(Turn Over)

- (b) Prove that if |G| = 1365, then G is not a simple group.
- (c) Show that every irreducible real polynomial is either linear or $ax^2 + bx + c$ with $b^2 4ac < 0$.
- (d) Write down the class equation for the symmetric group S₃.

2. Answer any two questions:

2×4

- (a) Prove that the group $SL(2, \mathbb{R})$ is a normal subgroup of the group $GL(2, \mathbb{R})$ and the quotient group $GL(2, \mathbb{R})/SL(2, \mathbb{R}) \cong \mathbb{R}^*$ where \mathbb{R}^* is the multiplicative group of all non-zero real numbers.
- (b) Define direct product of the groups G_1 , G_2 , ..., G_n . Then show that the center of a direct product is the direct product of the centers, i.e. $Z(G_1 \times G_2 \times ... \times G_n) = Z(G_1) \times Z(G_2) \times ... \times Z(G_n)$.
- (c) Let $K \subseteq F$ be a field extension and $\alpha \in F$ be algebraic over K. Then show that there exists a unique monic irreducible polynomial $f(x) \in K[x]$ such that $f(\alpha) = 0$.
- (d) Suppose G be a group of order p²q where p and q are distinct primes. Then show that G is not simple.

3. Answer any one question :

1×8

- (a) (i) State and prove the Sylow's first theorem.
 - (ii) If G is an abelian group having subgroups $H_1, H_2, ..., H_t$ such that $|H_i \cap H_j| = 1$, for all $i \neq j$, then prove that $K = H_1H_2 ... H_t$ is a subgroup of G of order $|H_1| \times |H_2| \times ... \times |H_t|$ and $K \cong H_1 \times H_2 \times ... \times H_t$.
- (b) (i) Show that if R is a principal ideal domain, then it is a unique factorization domain. Give an example to show that the converse is not true.
 - (ii) If $K \subseteq F \subseteq L$ is a tower of fields then show that [L : F] [F : K] = [L : K] where [L : F] denotes the degree of L over F.

[Internal Assessment - 05]

MTM-203 (UNIT-2) LINEAR ALGEBRA

1. Answer any two questions:

 2×2

(a) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator defined by T(x, y) = (x, 0) for all $(x, y) \in \mathbb{R}^2$. Find the minimal polynomial of T.

- (b) Define linear functional on a vector space. Let T be a linear operator on a finite-dimensional vector space V. When you say that T is diagonalizable?
 - (c) What do you mean by a normal operator? Are all self-adjoint operators normal? Justify.
 - (d) Let V be the space of all real valued continuous functions. Define T: V \rightarrow V by $(Tf)(x) = \int_0^x f(t)dt$. Show that T has no eigen value.

2. Answer any two questions:

2×4

- (a) (i) Determine all possible Jordan canonical forms for a linear operator T whose characteristic polynomial is $(t 2)^5$ and minimal polynomial is $(t 2)^2$.
 - (ii) Let V(R) be a vector space of polynomials with inner product defined by

$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$$
. If $f(x) = x^2 + x - 4$, $g(x)$

=
$$x - 1$$
, then find $\langle f, g \rangle$ and $\|g\|$. 2+2

(b) Define quotient space. Let P_n be the vector space of all polynomials of degree $\leq n$ over R. Exhibit a basis of P_4/P_2 . Hence verify that

$$\dim\left(\frac{P_4}{P_2}\right) = \dim(P_4) - \dim(P_2)$$

- (c) Let V and V' be two vector spaces over the same field F and T: V → V' be a linear mapping. Show that V/KerT ≅ ImT. Hence derive the rank nullity theorem if V is a finite dimensional vector space.
 2+2
- (d) Let V be a finite dimensional vector space over a field F and T: $V \rightarrow V$ be a linear operator. Show that there exists a unique monic polynomial m(x) of least degree such that $m(T) = T_0$.
- 3. Answer any one question:

1×8

- (a) (i) Let T be a linear operator on a finite dimensional vector space V and let c₁, c₂, ..., c_k be the distinct characteristic values of and let W_i be the null space of (T c_iI), i = 1, 2, ..., k. Then prove that the following are equivalent:
 - (1) T is diagonalizable.

- (2) The characteristic polynomial for T is $f = (x c_1)^{d_1} (x c_2)^{d_2} ..., (x c_k)^{d_k}$ and dim W_i = d_i, i = 1, 2, ..., k.
- (3) $\dim W_1 + \dim W_2 + ... + \dim W_k = \dim V$.
- (ii) Let T be a linear operator on V. If T² = 0, what can you say about the relation of the range of T to the null space of T? Give an example of linear operator of T on R² such that T² = 0, but T ≠ 0.
- (b) (i) Find the rational canonical form of the

matrix
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
. Is the rational

canonical form of the given matrix A coincides with the Jordan canonical form of A? Justify your answer.

(ii) Let V be a vector space over a field F and f: V → V be an idempotent linear operator. Show that V = Kerf ⊕ Imf. (3+2)+3

[Internal Assessment - 05]