M.Sc. 3rd Semester Examination, 2022 APPLIED MATHEMATICS

(Discrete Mathematics)

PAPER - C-MTM-304(CBCS)

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

- A. Answer any four questions of the following: 2×4
 - 1. Define bipartite graph and give an example.
 - 2. Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.

(Turn Over)

- 3. Find a closed form for the generating function for the following sequence:
 1, 0, -1, 0, 1, 0, -1, 0, 1,
- 4. Define chain and anti-chain with an example in connection with poset.
- 5. Find the dual of the Boolean expression: wx (y'z + yz') + w'x'(y' + z) (y + z')
- 6. Find the language for the regular expression given below: (a + b) * (a + bb).
- B. Answer any four questions of the following: 4×4
 - 7. A simple graph with n vertices and kcomponents cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges.
 - 8. Define poset and consider P(S) as the power set, show that the inclusion relation \subseteq is a poset on the power set P(S).

9. In the Boolean algebra (B, +, ., '), express the Boolean function

$$f(x, y, z) = (x + y)(x + z) + y + z'$$

in its disjunctive normal form.

10. Using mathematical induction, prove that for any integer n > 1.

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$$

- 11. Define planar graph and prove that the graph $K_{3,3}$ (Kuratowski's second graph) is non-planar.
- 12. Define finite-state machine (FSM). Let M be the FSM with state table appearing as

	f		g	
S	а	b	а	b
<i>S</i> ₀	s_1	s_0	1	0
s,	<i>S</i> ₃	s ₀	1	1
s ₂	S_1	S ₂	0	1
S_3	S ₂	<i>s</i> ₁	0	0

- (i) Find the input set Σ , the state set S, the output set O, and initial state of M.
- (ii) Draw the state diagram of M.
- C. Answer any two questions of the following: 8×2
 - 13. (i) State and prove Euler's theorem for a connected planar graph.
 - (ii) If G is connected planar graph with $n(\ge 3)$ vertices and e edges, then prove that $e \le 3n-6$.
 - (iii) Prove that every nontrivial tree T has at least two vertices of degree 1. 3+3+2
 - 14. Define phrase-structure grammar. Describe the classification scheme of phrase-structure grammar introduced by Noam Chomsky. 2+6
 - 15. (i) Determine the generating function of the following sequences:

$$f_r = \frac{r(r+1)}{2}, \ (r>0).$$

(ii) Use generating function to solve the recurrence relation:

$$a_{n+2} - 2a_{n+1} + a_n = 2^n$$
 taking $a_0 = 2, a_1 = 1$.
3 + 5

16. State the principle of inclusion-exclusion.

Use the principle of inclusion-exclusion, find the number of primes less than 100. 2 + 6

[Internal Assessment - 10 Marks]