M.Sc. 3rd Semester Examination, 2022 APPLIED MATHEMATICS

(Partial Differential Equations and Generalized Functions)

PAPER -- MTM-301

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Symbols have their usual meaning

- A. Answer any four questions from the following: 2×4
 - 1. State the Basic existence theorem for Cauchy problem.

(Turn Over)

- 2. Give an example of an ill-posed partial differential equation.
- 3. Define characteristic curve and base characteristics of a first order quasi linear PDE.
- 4. Give an example of a harmonic function in a domain D which has neither a maximum value nor a minimum value in D.
- 5. Define domain of dependence of the Cauchy problem for the wave equation.
- 6. Show that $\delta(-t) = \delta(t)$ where δ is the Dirac delta function.
- B. Answer any four questions from the following: 4×4
 - 7. Use method of characteristic to solve $u_x + 2u_y = 1 + u$ such that $u = \sin x$ on the line y = 3x + 1.

- 8. Solve the equation $\Delta u = 0$ in the disc $D = \{(x, y) : x^2 + y^2 < a^2\}$ with the boundary condition $u = 1 + 3 \sin \theta$ on the circle r = a.
- 9. Show that for a continuous function $u: D \to \mathbb{R}$, the two mean value properties are equivalent.
- 10. Find the general solution of the problem $u_{ttx} u_{xxx} = 0$, $u_x(x, 0) = 0$, $u_{xt}(x, 0) = \sin x$, in the domain $\{(x, t) : -\infty < x < \infty, t > 0\}$.
- 11. Using the method of separation of variables, find the solution of the following problem:

$$u_{t} = 12u_{xx} \text{ in } 0 < x < \pi, t > 0,$$

$$u_{x}(0, t) = u_{x}(\pi, t) = 0, t \ge 0,$$

$$u(x, 0) = 1 + \sin^{3}x, 0 \le x \le \pi.$$

12. Solve:

$$(x^2D^2 - xyDD' - 2y^2D'^2 + xD - 2yD')u = \log\left(\frac{y}{x}\right) - \frac{1}{2}.$$

- C. Answer any two questions from the following: 8×2
 - 13. (i) Find the derivative of the Heaviside unit step function.
 - (ii) Establish the Poisson's formula for the solution of a Dirichlet problem for the Laplace equation in a disk of radius 'a'.
 2+6
 - 14. (i) State and prove the weak maximum principle.
 - (ii) Establish the Laplace equation in polar coordinates. 4+4
 - 15. (i) Prove that $\delta(at) = \frac{1}{a}\delta(t)$, a > 0.
 - (ii) Solve the following initial boundary value problem using parallelogram identity:

$$u_{t} - u_{xx} = 0, 0 < x < \infty, 0 < t < 2x$$

$$u(x, 0) = f(x), 0 \le x < \infty$$

 $u_i(x, 0) = g(x), 0 \le x < \infty$,
 $u(x, 2x) = h(x), x \ge 0$,
where $f, g, h \in C^2[(0, \infty)]$.

3 + 5

16. Reduce the following equation to a canonical form and hence solve it:

$$3u_{xx} + 10 u_{xy} + 3u_{yy} = 0.$$

6 + 2

[Internal Assessment - 10 Marks]