2022

1st Semester Examination APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

Paper: MTM - 106

(Graph Theory)

Full Marks: 20

Time: One Hour

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any two questions:

 $2 \times 2 = 4$

- (a) Prove that every connected graph has at least one spanning tree.
- (b) Draw the digraph graph G corresponding to adjacency matrix

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

(c) Prove that every tree with two or more vertices is 2-chromatic.

P.T.O.

(d) Describe cut-set and cut-vertex in a connected graph.

2. Answer any two questions:

 $4\times2=8$

- (a) Let T is a tree with n vertices. Prove that it has precisely (n-1) edges.
- (b) Show that the graphs G and G' are isomorphic.

- (c) Define a binary tree. Find the number of pendant vertices in a binary tree with n vertices.
- (d) Find the chromatic polynomial of the graph G

3. Answer any one question:

 $8 \times 1 = 8$

- (a) (i) Does there exists a 4-regular graph on 6 vertices? If so construct a graph.
 - (ii) Consider the graph shown in figure, find the number of walks of length three from V_2 to V_4 and also check the connectedness of the graph:

- (iii) Write down the statement of four-colour problem in graph theory.
- (b) (i) State and prove Euler's theorem for a connected planar graph.
 - (ii) Prove that the chromatic polynomial of any cycle C_n of length n is

$$p_n(\lambda) = (\lambda - 1)^n + (-1)^n (\lambda - 1).$$