2022

1st Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

Paper: MTM - 102

(Complex Analysis)

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any four questions:

 $2\times4=8$

- (a) With necessary conditions, write the Homotopy form of the Cauchy's Theorem.
- (b) Find the fixed points of the transformation

$$w = \frac{z-1}{z+1}.$$

- (c) Define the isolated singular point z_0 and then write the general form of Laurent series expansion about the z_0 with the region where it is valid.
- (d) State the theorem for transformations of harmonic functions from a domain Dz in the z-plane onto the domain Dw in the w-plane.

P.T.O.

- (e) Define branch and branch cut for a multi-valued function f(z).
 - (f) Find the points at which $w = \cos(z)$ is not conformal.
- 2. Answer any four questions:

$$4 \times 4 = 16$$

- (a) Find Taylor or Laurent series expansion of the function $f(z) = \frac{z}{(z^2 4z + 3)}$ with center at c = 1, where region of convergence is 0 < |z 1| < 2.
 - (b) When $\log(z) = \ln(r) + i\theta$, r = |z| > 0, show that $\log(i^2) \neq 2\log(i)$ for $\frac{3\pi}{4} < \theta < \frac{11\pi}{4}$, while $\log(i^2) = 2\log(i)$ for $\frac{\pi}{4} < \theta < \frac{9\pi}{4}$.
 - (c) Does Cauchy-Goursat theorem hold separately for the real or imaginary part of an analytic function f(z)? Justify your answer.
- (d) Using the calculus of residue evaluate $\int_0^\infty \frac{2x^2 1}{x^4 + 5x^2 + 4} dx$.
- (e) With the help of residue, find the inverse Laplace transformation f(t) of $F(s) = \frac{s}{(s^2 + a^2)^2} (a > 0)$.

(f) Show that series
$$\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$$
 and $\sum_{n=0}^{\infty} \frac{(z-i)^n}{(2-i)^{n+1}}$

are analytic continuation of each other.

3. Answer any two questions out of four questions:

$$8 \times 2 = 16$$

- (a) (i) State and prove the Casorati-Weierstrass's theorem.
 - (ii) Find the value of $\int \text{Log}(z+3i)dz$ where c:|z|=1.
- (b) (i) Find a conformal map, which maps the unit disk |z| < 1 in the z-plane onto the right half-plane Re(w) > 0 in the w-plane.
 - (ii) Find the Mobious transformation that maps 1, 0, -1 to the respective points $i, \infty, 1.6+2$
- (c) (i) With the concept of integration along a branch cut, show that $\int_0^{\infty} \frac{x^{-a}}{x+1} dx = \frac{\pi}{\sin a\pi} \text{ where } 0 < a < 1.$
 - (ii) Find the singular points of the function $z \mid z \mid$, if any. Justify your answer. 6+2
- (d) (i) State the Rouches theorem.

- (4)
- (ii) Let $f(z) = z^4 + z^2 + 8z 4$. Prove that exactly three roots of the polynomial f(z) lie
- in 1 < |z| < 3 and there is exactly one root
- of the polynomial f(z) in the disc $|z+2| < \frac{1}{2}$.