2022

1st Semester Examination APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

Paper: MTM - 101

(Real Analysis)

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any four questions:

 $2 \times 4 = 8$

- (a) Show that subtraction of two complex measurable functions on a measurable set *X* is measurable.
- (b) Let X be a measurable space and $\chi_E : X \to \mathbb{R}$ be a measurable function where $\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$. Is E a measurable set in X?
- (c) Define Borel set.
- (d) Show that the set of all rational numbers is a null subset of \mathbb{R} .

- (e) For any set $E \subseteq \mathbb{R}$, $c \in \mathbb{R}$ prove that $m^*(E+c) = m^*(E)$.
- (f) For every $\epsilon > 0$ and $f \in L^1(\mu)$, show that $\mu \{x \in X : |f(x)| \ge \epsilon \} \le \frac{1}{\epsilon} \int f d\mu$.
- 2. Answer any four questions:

 $4 \times 4 = 16$

- (a) Establish a necessary and sufficient condition for a function $f:[a,b] \to \mathbb{R}$ to be a function of bounded variation on [a,b].
- (b) Show that the function f(x) defined on [2, 5] by $f(x) = \begin{cases} 3, & \text{for all rationals } x \text{ in } [2, 5] \\ 4, & \text{for all irrationals } x \text{ in } [2, 5] \end{cases}$ is not a function of bounded variation on [2, 5]. 4
- (c) If the function $f:[a,b] \to \mathbb{R}$ is continuous and $\phi:[a,b] \to \mathbb{R}$ is bounded variation, show that RS-integral $(RS) \int_a^b f(x) d\phi(x)$ exists. Hence show that for any continuous function $f:[a,b] \to \mathbb{R}$ the Riemann integral $(R) \int_a^b f(x) dx$ exists.
- (d) Show that every finite sum of real numbers can be expressed as the R-S integral over some interval.

- (e) Let $f_n: X \to \mathbb{R}^*$ be measurable for n = 1, 2, 3, ...Then show that $\lim \inf_{n\to\infty} f_n$ and $\inf_{n\to\infty} f_n$ are measurable functions on X.
- (f) If $f_n: X \to [0, \infty]$ is measurable for n = 1, 2, 3, ...and $f(x) = \sum_{i=1}^{\infty} f_n(x), x \in X$, then show that

$$\int_{Y} f d\mu = \sum_{n=1}^{\infty} \int_{Y} f_n d\mu.$$

3. Answer any two questions:

 $8 \times 2 = 16$

- (a) (i) Let μ be a measure on a σ -algebra \mathfrak{M} . Then show that $\mu(A_n) \to \mu(A)$ as $n \to \infty$ if $A = \bigcup_{n=1}^{\infty} A_n, A_n \in \mathfrak{M}$ and $A_1 \subset A_2 \subset A_3 \subset \cdots$
 - (ii) Let μ be a measure on a a σ -algebra of subsets of X. Show that the outer measure μ^* induced by μ is countably subadditive.
- (i) Let f(x) be defined as $f(x) = \frac{1}{2}$ $0 < x \le 1$ and f(0) = 0. Show that f is Lebesgue integrable on [0, 1]. Also compute 6 the integral.
 - (ii) Evaluate the following:

 $\int_1^4 (2x^2+3)d([x]+2)$.

2

P.T.O.

- (c) (i) Show that every bounded Riemann integrable function is Lebesgue integrable and the two integrals are equal in this case.
 - (ii) Let $\{E_k\}$ be a sequence of measurable sets in X, such that $\sum_{k=1}^{\infty} \mu(E_k) < \infty$. Then prove that almost all $x \in X$ lie at most finitely many of the sets E_k .
- (d) (i) Show that every bounded measurable function on [a, b] is Lebesgue integrable on [a, b]. 5
 - (ii) Show that the Cantor set is an uncountable set.