2022

M.Sc.

4th Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND

COMPUTER PROGRAMMING

PAPER-MTM-405

Full Marks: 25

Time: 1 Hour

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

MTM-405A DYNAMICAL METEOROLOGY-II

1. Answer any two questions:

2×2

- (a) How Jet Stream is generated in the atmosphere?
- (b) What are dynamic and kinemetic boundary conditions for a front?

(Turn Over)

- (c) Suppose temperature increases from 8°C to 12°C towards the east, across a distance of 100 km. Find the vertical gradient of geostrophic wind, given $f_c = 10^{-4} s^{-1}$.
- (d) What is CAPE in the atmosphere?

2. Answer any two questions:

2×4

- (a) Derive the conditions for frontogenesis and frontolysis.
- (b) An updraft of 8 m/s exists 2 km west of your location and there is a west wind of 5 m/s. At your location there is zero vertical velocity, but the air is 3°C wanmer than the sorrounding environment of 25°C. What is the initial vertical acceleration of the air over your location?
- (c) Derive the meridional temperature gradient in the atmosphere.
- (d) Explain the thermodynamics of a hurricanes.

3. Answer any one question :

1×8

- (a) Derive the perturbation equations of a two-dimensional gravity waves propagating in the x,
 z plane neglecting coriolis force in incompressible atmosphere.
- (b) (i) Show that a front in geostrophic wind field is stationary.
 - (ii) Find the slope of frontal surface in the atmosphere. 2+6

[Internal assessment - 05]

MTM-405B OPERATIONAL RESEARCH MODELLING - II

OFERATIONAL RESEARCH MODELLING - I

1. Answer any two questions:

2×2

- (a) Define joint and conditional entropies.
- (b) Define reliability. How does it differ from probability?

- (c) What do you mean by memoryless channel and channel matrix?
- (d) Show that energy function H is continuous.

2. Answer any two questions:

2x4

- (a) For any two messages X, Y prove that H(X, Y)
 ≤ H(X) + H(Y) with equality iff X and Y are independent.
- (b) Suppose, a system contains a primary element and a stand-by element. Let λ_p and λ_d represent the failure rates of the primary element and stand-by element. Find the reliability of this system. Also, find the system reliability and MTBF when $\lambda_p = \lambda_d = \lambda$.
- (c) A particle attached to the lower end of a vertical spring whose other end is fixed is oscillating about its equilibrium position. If x denotes the particle's displacement from the equilibrium position, the governing differential equation for

this motion is $x = -\omega^2 x$. If the particle is at its maximum displacement x = a at time t = 0 and at this instant of time, a force u per mass is applied to the particle in order to bring the particle to rest when its displacement is zero, find such a force u.

(d) In a system, there are n number of components connected in parallel with reliability R_i(t), i = 1, 2, ..., n. Find the reliability of the system. If R_i(t) = e^{-λt} for i = 1, 2, ..., n then find the reliability of the system.

3. Answer any one question :

 1×8

(a) Let a car be driven from a stationary position on a horizontal way to a stationary position in a garage moving a total distance a. The available control for the driver is the accelerator and the break. Find the minimum time to bring the car to the stationary position at a distance α and the optimal control to the applied to the car. (b) Apply Shannon's encoding procedure to encode the message AADCCDBABBA using the following information:

Alphabet	Α	В	С	D
Probability	0.1	0.4	0.3	0.2

[Internal assessment - 05]