2022

1st Semester Examination ELECTRONICS

Paper: ELC 102

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Unit - 1

(Electronic Materials)

Answer any *two* questions each from Group-A and Group-B; and *one* question from Group-C.

Group - AAnswer any *two* questions:

1. Classify the various types of interatomic bonds.

2.	What is Fermi surface?			
3.	What are the different contributions polarization of a dielectric material?	to	the	tota
1	What is quantum well and quantum wire?			1+1

P.T.O.

 $2 \times 2 = 4$

2

Group - B

5.	What is	meant	by	crystal	imperfections?	Classify	them
	in order	of their	r ge	eometry			1+3

Answer any two questions:

 $4 \times 2 = 8$

 $8 \times 1 = 8$

- 6. Explain the terms transition temperature and critical field for a superconductor. For lead, the critical field at 0 K is 6.39 × 10⁴ A/m and critical temperature for zero magnetic field is 7.18 K. Find the critical field for lead at 4 K.
- 7. Explain the absorption of light by interband and intraband transitions. 2+2
- 8. Describe the structure of ferrites. Mention their uses. $2\frac{1}{2}+2\frac{1}{2}$

Group - C

Answer any one question:

- How are the point defects evolved? Obtain an expression for the equilibrium concentration of Schottky defects in ionic crystals.
- Discuss the drawbacks of classical free electron theory.
 Derive the expression for Fermi energy E_F at temperature
 K.

Unit - 2

(Semiconductor Device)

Answer any *two* questions each from Group-A and Group-B; and *one* question from Group-C.

Group - A Answer any two questions:

 Explain how can you determine carrier concentration of a semi-conductor from the C - V measurement of a P-N diode.

- 2. Why activation energy method is preferred over current-voltage measurement method to determine barrier height of a metal-semiconductor contact?
- 3. What do you mean by Fermi level pinning effect when interface state density is large? 2
- 4. Explain the terms input ionization and field ionization in connection with junction break down. 1+1

Group - B

Answer any *two* questions:

 $4\times2=8$

 $2 \times 2 = 4$

- 5. For a metal-semiconductor junction, prove that $9\phi_{Bn} + 9\phi_{Bp} = Eg$ where the symbols have their usual meanings.
- 6. Explain the working principle of a varactor diode.

7. Define the terms accumulation, depletion, inversion and strong inversion in connection with a MOSFET.

1+1+1+1

8. Derive the expression of pinch off voltage and saturation drain current of a MOSFET. 2+2

Group - C

Answer any *one* question:

 $8 \times 1 = 8$

9. Derive the expressions of built-in-potential and depletion layer width of an abrupt PN junction. Distinguish between depletion capacitance and diffusion capacitance.

(3+3)+2

 Derive the expression of diode current of a metalsemiconductor junction using thermionic emission theory.