2022

1st Semester Examination COMPUTER SCIENCE

Paper: COS 104

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any four questions from the following: 2×4=8
 - (a) What do you understand by behavioral and performance timing constraint?
 - (b) What is "fail-safe" state of a system?
 - (c) What do you understand by unbounded priority inversion?
 - (d) What is POSIX?
 - (e) Give and explain an example of stimulus response deadline.
 - (f) What is bin-packing scheme?
 - (g) "A cyclic schedular is more proficient than a pure time-driven schedular for scheduling a set of hard real-time tasks" — Justify or falsify the statement.

- (h) What do you understand by edge computing realtime application?
- 2. Answer any four questions from the following: 4×4=16
 - (a) Consider the following set of three periodic realtime tasks: T1 = (20,30), T2 = (15,60), T3=(20, 120) to be run on a uniprocessor. Determine whether the task set is schedulable under RMA.
 - (b) Why fault tolerance is essential to achieve high reliability? Briefly discuss the hardware fault tolerance techniques. 2+2
 - (c) Assume that the drift rate between any two clocks is restricted to ρ = 5 × 10⁻⁷. Suppose we want to implement a synchronized set of six distributed clocks using the central synchronized scheme so that the maximum drift between any two clocks is restricted to ∈2ms at any time, determine the period with which the clock need to be resyncronized.
 - (d) Explain using an appropriate example as to why a critical resource can get corrupted if the task using it is preempted, and then another task is granted use of the resource.
 - (e) Suppose a network designed using IEEE 802.4 protocol has three nodes. Node N1 needs to transmit 1 MB of data every 300ms. Node N2 needs to transmit 1.2 MB of data every 500ms. Node N3 needs to transmit 1.2 MB of data every 500ms. Select a suitable TTRT for the network and compute the token holding time for each node.

- (f) Discuss the deficiencies of Windows as Real-Time OS.
- (g) Real-time tasks are normally classified into periodic aperiodic and sporadic real-time tasks. What are the basic criteria based on which a real-time task can be determined to belong to one of the three categories? Give one example of each category.

2+2

(h) Consider the following set of four independent realtime periodic tasks:

Task	Start time (nSec)	Processing time (nSec)	Period (nSec)	
T1	20	25		
T2	40	10	50	
T 3	20	15	50	
T4	60	50	200	

Assume that task T3 is more critical than task T2. Check whether the task set can be feasibly scheduled using RMA.

- 3. Answer any two questions from the following: 8×2=16
 - (a) Explain the operations of priority ceiling protocol (PCP) in sharing critical resources among real-time tasks. Explain how PCP is able to avoid deadlock, unbounded priority inversion and chain blockings.

2+2+2+2

- (b) Discuss briefly various features of the Real-Time operating system.
- (c) Identify key difference among hard, soft and firm real-time system. Give one example of real-time tasks corresponding to each of these three categories. Identify timing constraints in your tasks and justify why the tasks should be categorized into the categories that you have indicated.
- (d) A set of hard real-time periodic tasks need to be scheduled on a uniprocessor using RMA. The following table contains the details of these periodic tasks and their use of three non-preemptive shared resources. Can the tasks T2 and T3 meet their respective deadlines when priority ceiling protocol (PCP) is used for resources scheduling?

Task	\mathbf{p}_i	e,	R _i	R ₂	\mathbf{R}_3
Т1	400	30	15	20	/
T2	200	25	_	20	10
Т3	300	40	-	_	-
T4	250	35	10	10	10
Т5	450	50	-	_	5

p_i indicates the period of the task T_i and e_i indicates its computation time. The period of each task is the same as its deadline. The entries in the R_i columns indicate the time duration for which a task needs the named resource in non-preemptive mode. Assume that after a task releases a resource, it does not acquire the same or any other resource.