Time: Two Hours

2022

1st Semester Examination CHEMISTRY

Paper: CHEM 102

(Organic Chemistry)

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any *four* of the following questions: $2\times4=8$
 - (a) What is isoprene rule? What is biogenetic isoprene rule?
 - (b) Plant based chemicals can be termed as Renewable Chemicals. Explain.
 - (c) What is Barton reaction? Illustrate.
 - (d) What is phase transfer catalyst? Give an example and its mechanism (in brief).
 - (e) What is Multicomponent reaction?
 - (f) State and explain the principle of microscopic reversibility.

Or

How will you convert Benzaldehyde to ephedrine?

2

P.T.O.

- 2. Answer any four of the following questions: 4×4=16
 - I. Predict the products with plausible mechanism:

(i)
$$H_3C$$

CH₃

PPh₃ + DEAD

PhCOOH

 K_2CO_3

MeOH

[Q]

II. (a) Synthesize the following 6-6-6-5 tetracyclic triterpenoids from squalene by applying biogenetic isoprene rule:

III. Synthesize the following 6-6-6-5 pentacyclic triterpenoids lupeol (III) and neolupenol (IV) from squalene:

IV. How will you synthesize the following compounds?Use retro-synthetic approach with easily available starting materials.

V. Complete the reactions and give the stereochemistry of the products: 2+2

$$(i) \qquad \xrightarrow{hv}$$

- VI. (a) Cite an example of an electrocyclic reaction which does not occur although it is symmetry allowed. Give proper reasoning to support your answer.
 - (b) What happens when (2E, 4Z, 6Z, 8E)-2,4,6,8-decatetraene is heated? 2+2
- 3. Answer any *two* of the following questions: $8 \times 2 = 16$
 - I. (a) What is Nazarov cyclisation? Give a suitable example.
 - (b) What is correlation diagram?
 - (c) Use correlation diagram to examine whether disrotatory mode of ring-opening of cyclobutene to 1,3-butadiene is thermally allowed or photochemically allowed process.

3+2+3

II. Use retrosynthetic approach to synthesize the following compounds:
4+4

III. Carry out the following transformation (any three)

P.T.O.

$$(iv) \bigcirc ONO \bigcirc H_3C \bigcirc COCH_2OCOCH_3 \bigcirc ONO \bigcirc H_3C \bigcirc OOCH_2OCOCH_3 \bigcirc OOCH_2OCOCH_2OCOCH_2OCOCH_3 \bigcirc OOCH_2OCOCH_2O$$

IV. Synthesize any two of the following 6-6-6-6 pentacyclic triterpenoids germanicol (V), δ -amyrin (VI) and β -amyrin (VII) from squalene: