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7.1 Overview 

Due to climate change and increased anthropogenic activities, the forests are likely to face 

the risk to health.  In the Saranda forest, forest health gets severely affected by iron ore 

mining activities, climate change, and air pollutions over the last 35 years, and it 

continues to get affected in the future too. So, it is essential to monitor forest health risk 

(FHR) in surrounding mining affected forest region. 

7.2 Data sources 

For the FHR study, satellite data (Hyperion, Landsat, Quickbird, Cartosat-1-DEM, and 

Sentinel-1) were collected from the various sources (Earth Explorer, Google Earth, 

Sentinel hub, and Bhuvan). We studied the FHR for the years present and predicted due 

to the data's availability, precision, and accuracy. From the years 1980 to the present (in 1 

km grid), climate data were downloaded from the NCEP (www .ncep.noaa.gov/) website 

for the present analysis. Using the RCP 4.5 model, climate data (in 1km) were obtained 

from the IPCC (www.ipcc.ch) website from 2000 to 2050 for predicted analysis. 

Collected mean max and mini temperature, rainfall, and solar radiation data were 

converted to a spatial raster grid using IDW (Inverse distance weighting) method in 

ArcGIS software (developed by ESRI) for predicted years. LULC (land use and land 

cover) maps were prepared using the MOLUSCE (modules for land use change 

simulations) model in QGIS software’s plugin (developed by nest GIS and Asia air 

survey) for predicted years. Deforestation susceptibility (DS) data for the same predicted 

years were also prepared using a multi-criterion based AHP model. The soil, lithology, 

and geomorphology data were collected from various source NBSS (www.nbsslup.in), 

GSI (www.gsi.gov.in), and Bhuvan (www.bhuvan.nrsc.gov.in) and prepared for present 

years. Forest density data were collected from the Chaibasa forest department of 

Jharkhand. From work done by Kayet et al. (2019 a&b), forest health, foliar dust, plant 

diversity, and tree species data were prepared for the present year. From the Google Earth 

image, the deforestation map (present) was greatened using time-series data. Using the 

Cartosat-1 stereo image, DEM (digital elevation model) was prepared to evaluate altitude 

and slope data for the present year. LST (land surface temperature), hot spot, NDVI, and 

drought data were generated by different models based on satellite imagery (Landsat 8 

OLI) and climate data. The distance from settlements, roads, and mines data were 

performed from Google Earth's image and Toposheet. In the study region, tree’s spectral, 

foliar dust, and precise locations GPS (global positioning system) data for forest healthy 
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and unhealthy data were collected by different instruments for validation purposes. Data 

source details shown in (Appendix.3). 

7.3 Field observation 

The field surveys were conducted into dry season in the Saranda forest. We have recorded 

sixty tree’s leaf spectra (healthy and unhealthy trees) using a spectroradiometer during the 

time of field survey. These spectra were used for accuracy assessment of FHR. Also, we 

have collected foliar dust concentration using PCE-RCM 05 (dust instrument) and 

collected the GPS (Garmin) location points to validate FHR results. During the field 

survey, we observed a clear negative relationship between FHR and mining. 

7.4 Data pre-processing 

Satellite data were pre-processed by scientific methods (geometric, radiometric, 

atmospheric, and terrain correction) in the image processing software (ENVI-developed 

by Harris geospatial solutions). We have used the FLAASH (fast line-of-sight 

atmospheric analysis of the hypercubes) model for atmospheric correction of satellite 

imagery (Anderson et al., 2002). A total of sixty spectra corresponding to different tree 

species were recorded, and the mean spectra of each tree species were used to analyze 

forest health conditions. Pre-processing field spectra consisted of temperature drift 

correction, water absorption, noise bands removal, and spectral smoothing using ASD 

FieldSpec software. The average spectra of tree species were calculated after spectral 

smoothing. These average spectres were used for spectral library development in ENVI 

and applied to classify forest health conditions (Kayet et al., 2019a).  

Many researchers worked on RCP 4.5, 6.0, and 8.5 models for predictive analysis (Raju 

et al., 2017; Chakraborty et al. 2019). It has been observed from the literature review that 

the result obtained by the RCP 4.5 model shows a better fit for the Indian climate 

condition, so we have used this model-based climate data for this analysis. Max & mini 

temperature, solar radiation, and rainfall data were bias-corrected by LS (linear scaling) 

method and converted a regional scale using the downscaling method (Raju et al., 2017; 

Fang et al., 2015). Cartosat-1 DEM data was corrected through the C-correction method 

(Kobayashi & Sanga, 2009) in the image processing tool of LPS software (developer by 

hexagon geospatial) based on DGPS (differential global positioning system) survey 

points. The geomorphic (soil, geomorphology, and lithology) and forest density factors 

were rectified from collected maps (toposheet) using the rectification tool of Arcmap. The 
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anthropogenic factors (distance from mines, roads, & settlements) were digitized 

(polygons) from the Google earth image as well as toposheet and corrected the 

topological error in the topology tool of Arcmap. All pre-processed datasets were re-

projected into the UTM (45° north) coordinate system with WGS-84 data and converted 

to a raster grid cell (30m×30m) multi-criteria model based FHR analysis. 

7.5 Causative factors of forest health risk 

Many causative factors such as climate (max & min temperature, rainfall, wind speed and 

drought), geomorphology (soil, geology, geomorphology and LULC), forestry (forest 

health, forest density, tree species, plant diversity, NDVI & deforestation), topography 

(slope & altitude), environmental (LST, hot spot, & foliar dust), and anthropogenic 

activities (distance from mines, roads, and settlements)  are affected the forest health 

(Trumbore & Hartmann, 2015; Gauthier et al., 2015; Saha et al., 2020). We have also 

used predicted factors (max & mini temperature, rainfall, solar radiation, LULC, and 

deforestation susceptibility) for prediction FHR using a multi-criteria-based AHP model. 

The details of the present and predicted factors are shown below. 

7.5.1 Climate factors  

The climate factors (min & max temperature, rainfall, and wind speed) are the primary 

causative factors of FHR. Due to climate factors, the FHR rate is increasing day by day. 

The climate factors affect forest growth and productivity, which in turn affects risk to 

forest health (Holeksa et al., 2017; Ramsfield et al., 2016). The pre-processed rainfall 

(annual average), min & max temperature, and wind speed (monthly average) non-spatial 

data for the present year were converted to spatial grid format (raster) using the IDW tool 

in Arcmap. Also, predicted climate data (average min & max temperature, rainfall, and 

solar radiation) for the temporal domains (2030 & 2050) were generated from the RCP 

4.5 climate model and converted to spatial raster format using Arcmap. 

 Drought directly affects trees by growth as well as causing injury or death. Also, it 

indirectly affects forest health by increasing insect pests, wildfire, and disease (Klos et al., 

2009; Jactel et al., 2012). Some factors are directly and indirectly linked to drought. For 

drought analysis, some researchers had used eight indices likes rainfall, temperature, 

NDVI, LST, SMI (soil moisture index), SAVI (soil-adjusted vegetation index), 

VCI(vegetation condition Index), and VTCI (vegetation temperature condition index) 

based on the multi-criteria analysis in GIS platform (Rahman et al., 2016; Belal et al., 
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2014; Schwarz et al., 2020). We have used climate and satellite imagery data, and the 

aforesaid mentioned indices were calculated based on the raster calculator tool in 

Arcmap. These indices have been used to prepare drought raster data for FHR analysis. 

7.5.2 Geomorphological factors 

Soil is an indicator of forest health. Soil type and properties data are used to determine the 

forest's stress level and health, and it may be one factor used to assess the risk of health 

(Pritchett, 1980; Kopackova et al., 2015). Tree species community, its distribution, and 

their health depend on the soil, lithology, LULC and geomorphological condition 

(Fayolle et al., 2012; Ozcelik, 2008; Trumbore et al., 2015). Soil, geology, and 

geomorphology data were digitized and converted to spatial raster grid format for FHR 

analysis using Arcmap.  

LULC data were generated from Landsat imagery using the SVM algorithm. We had 

classified LULC into seven classes (dense forest, moderate forest, open forest, 

agricultural land, waterbody, built-up land, and wasteland). For predicted LULC, we had 

used the MOLUSCE plugin in QGIS software. MOLUSCE well simulates the changes in 

land-use between different periods (Gismondi et al., 2014). The ANN (artificial neural 

network) algorithm of the MOLUSCE plugin was applied to simulate land-use change for 

the years 2030 and 2050. The methodology adopted for LULC simulation from the study 

of Mohammadi et al. (2018). 

7.5.3 Forestry factors 

Tree species, diversity, and distribution are directly related to the risk of forest health 

(Bussotti et al., 2018). In the prior study (Kayet et al., 2019 a & b; Kayet et al.,2020), 

forest health, tree species, and plant diversity factors were generated from satellite 

imagery (Hyperion) and tree spectral data based on the spectroradiometer instrument. 

Forest density data were rectified and digitized for various forest features using the 

Arcmap tool and converted to spatial raster grid format. NDVI generated high and low 

values (0 to1) are indicated healthy and unhealthy vegetation (Tuominen et al., 2009). 

NDVI raster data was generated from the Red and NIR bands of Landsat 8 OLI imagery 

using raster calculator tool in Arcmap.  Deforestation is one of the significant factors for 

FHR analysis. Long term deforestation results in unhealthy or degraded forests 

(Chakravarty et al., 2012).  
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For predicted deforestation susceptibility, we used eighteen of the present (aspect, 

elevation, geology, soil, LST, LULC, hot spot, drought, geomorphology, min & max 

temperature, forest density, NDVI, precipitation, slope radiation, distance from mines, 

roads, and settlements) and five predicted causative factors (min & max temperature, 

precipitation, slope radiation, and LULC) from future time domain for simulated 

deforestation susceptibility (DS) for the years present and predicted (2030 and 2050) 

using multi-criteria based models. The methodology of deforestation susceptibility was 

adopted by Kayet et al., (2020) paper.   

7.5.4 Topographic factors 

Topographical parameters (elevation, slope, and aspect) are critical factors responsible for 

the risk of forest health or deforestation (Kumar et al., 2015). The low slope or moderate 

altitude conditions are suitable for the healthy forest, and high slope and altitude are 

suitable for unhealthy forests (Zirlewagen et al., 2007). From the DEM image altitude and 

slope, data were generated and classified into five different classes of spatial analysis 

tools in ArcGIS. The study area poses the elevation variation of 220 to 860 meters and 

slope variation of 7 to 38-degrees. 

7.5.5 Environmental factors 

Forest health conditions are too affected by the highest surface temperature or hotspot 

area. There is a negative relationship between surface temperature and forest health 

(Rogan et al., 2013; Fei, 2010; Wolff et al., 2018). In the prior study (Kayet et al. 2016. 

a&b), LST and hot spot raster data were also generated from satellite imagery (Landsat-8 

OLI) and other data with different models using the image processing tool of ENVI. 

Mining borne dust affects plants' growth, the forest's productivity, and changes the plant 

community structure (Tuominen et al., 2008). In the prior study (Kayet et al. 2019.b), 

narrow banded VIs (vegetation indices) tool based foliar dust raster data were generated 

from Hyperion satellite imagery and ground-based dust spectra data. The foliar dust 

concentration (g/m2) of the study area varies from 4 g/m2 to 84 g/m2. The area 

surrounding the mines, dump area, and transport sites exhibited higher foliar dust 

concentration. 
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7.5.6 Anthropogenic factors 

The presence of human interference near mines leads to the development of roadways, 

house construction, transportation, and other allied activities that also impose a risk to 

forest health (Cueva et al., 2019; Chomitz and Gray., 1999). The anthropogenic activities 

(distance from mines, roods, and settlements) vector data were generated by Google earth 

imagery and Toposheet. Using the Arcmap digitization tool, mines, roods network, and 

settlements areas were demarcated (visual interpretation) and converted to spatial raster 

grid format using the IDW interpolation method.   

7.6 Methodology  

7.6.1 Application of AHP (Analytical hierarchy process) model 

AHP model is useful for multi-criterion overlay weighted analysis. Multi criterion 

decision analysis (MDCA) fits well for the principles of AHP (Gigovic et al., 2017).  

Some researchers have used AHP based multi-criteria model for present and future 

simulation of the forest fire, environmental vulnerability and land-use suitability were 

analysed in a GIS platform based on causative factors (Chakraborty et al. 2019; Sahoo et 

al., 2019). That is why we had used AHP method for the assessment and prediction of 

FHR in our study area. The following Eq.7.1 calculates the FHR (Dhar et al., 2015). 

N N iF SF
kFHR wi wpx,py i k vi 1 k 1 A i C

px,py
i

 
 

  =     = =     

 

 

(Eq-7.1) 

where index i  represents causative factors attribute and k  represents causative factor 

sub- attribute classes; N F
 denotes the overall number of factor attributes; 

i
N

SF  denotes 

the number of sub-classes attributes for i  th attribute; 
k

w i  denotes the FHR value for 

k th sub-classes attribute and i th attribute; ,
vC px py i

 denotes the class value for ( ,px py ) cell 

of i th attribute; 
k

A
i  represents the interval of sub-classes attribute; iA

k

  represents 

indicator function for the k th sub-classes attribute of i th attribute and defined as 

(Eq.7.2). Eq.7.2 is the description of part of Eq-7.1. 
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(Eq.7.2) 

AHP model can be useful for FHR assessment and prediction of relative-weight ( w
i ) 

and normalized-weight (
k

w
i ). The following steps are used for the calculation of 

weights and consistency ratios (C.R). 

Step-1 Development of judgment matrices (A) by pair wise comparison  

AHP is constructed by pairwise comparison matrices (PCM). In these matrices, each 

factor is related to another factor and assigned by relative dominance value from 0 to 9 

(Dai & Blackhurst, 2012). For each factor of hierarchy structure, it is linked to all 

factors. These factors are compared and calculated relative weights for each factor 

based on PCM (Eq.7.3).  

p p1 11 ...
p p2 n

p p2 21 ...
p pA 1 n

... ... ... ...

P pn n ... 1
p p1 2

 
 
 
 
 
 

=  
 
 
 
 
 

 
   (Eq.7.3) 

Where, A indicates the PCM; P1, P2 denotes the weight of element 1 and 2; Pn 

indicates the weight of element n.  

Step-2 Calculation of relative weight ( W
k
) 

The relative weights ( W
k
) is calculated for each factor in PCM (Eq.7.4).  

W GM GMk k m
m F

= 


    (Eq.7.4) 

Where, the geometric mean of the kth row of judgment matrix is calculated 

as
...1 2

NFGM a a ak k k kNF
=

, NF is the total number of features. 

Step-3 Calculation of consistency ratio (C.R) 

For strength assessment of each factor is used consistency ratio. CR is calculated by 

the following equation (Eq.7.5). 
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=
CI

CR
RI

 (Eq.7.5) 

The CR is acquired by comparing CI (consistency index) with the appropriate values 

in which each is an average consistency index using the scale (1/9, 1/8, 1/7, 1/6, 5…1) 

(Kwiesielewicz et al., 2004). For a randomly generated reciprocal matrix, the CI shall 

be called to the RI (random index). The CI of the pairing matrix ensures that the 

judgment of the decision-maker is consistent. 

Step-4 Calculation of consistency index (CI) 

CI is calculated by Eq.7.6.  

max. .
1

NFC I
NF

 −
=

−  (Eq.7.6) 

Step-5 Calculation of final normalized-weight (
s

wi ) 

The normalized-weight (
s

wi ) of decision elements is combined with an overall rating. 

The last step in AHP is relative weight of decision elements collectively used to obtain 

overall rating for alternatives by Eq.7.7.  

, 1, ....,
1

=
= =
=

s
j m

s aw w w i ni ij j
j

 
(Eq.7.7) 

Where, 
s

wi  denotes the total weight of site i, 
s

wij  denotes the weight of alternative i 

related to attribute (map layer) the attribute j, aw j  indicated the weight of the attribute, 

and n represents the number of site. The same procedure should be followed for k
w

i
 

calculation. The final normalized-weight values thus obtained were used for forest 

health risk (FHR) assessment and prediction maps from the abovementioned 

procedure.  

7.6.2 Forest health risk (FHR) assessment and prediction in mines surrounding 

sites 

AHP model combined with different causative factors of FHR and analyzed by the 

GIS weighted overlay method was used to generate FHR maps in the temporal domain 

(present and future). Based on literature reviews (Sahana et al., 2018; Saha et al., 
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2020) FHR map is classified into five classes (very high, very, moderate, low, and 

very low). In this work, we have focused on the results of FHR at the surrounding two 

mines (Kiriburu and Meghahatuburu) sites. However, the overall flowchart for FHR 

assessment and prediction is shown in Figure.7.1. 

7.6.3 Sensitivity analysis 

Sensitivity analysis identifies the factors that affect the risk assessment more, based on 

numerical models (Dhar et al., 2015; Sahoo et al., 2019). This analysis is used to 

develop or apply environmental models to improve the understanding of parameter 

behaviors and impact and interactions of model parameters (Mair et al., 2012). In this 

work, a sensitivity analysis was done by all FHR related causative factors and 

identified the factors that have a higher impact on FHR.  Eq.7.8 can calculate 

sensitivity analysis. 

100(%)
−



−
=

j j

i fj

i j

f

s s
MS

s
 (Eq.7.8) 

Where, i attribute’s subscripts, j is the AHP based output class superscript. 
j

MSi  

represents the FHR class alteration (+/-) of the study area due to the absence of ith 

parameter. Subsequent, −

j
s i  is the jth type of FHR class due to exclusion of ith 

component, j
s

f
 stand for the jth type of FHR class using all factors. 

7.6.4 Statistical correlation of sensitive parameters  

In this study, the Pearson correlation method has been used to know the relationship 

between FHR and sensitive factors. This correlation coefficient or the bivariate 

correlation measures the linear correlation between independent (IDV) and dependent 

(DV) variables (Benesty et al, 2009). Its value range between +1 to -1, where +1 

indicates a positive linear correlation, and -1 indicates a negative linear correlation, 

and 0 denotes no correlation (Hamby, 1994) (E.q.7.9). 

1( )( )
r

0.5
22

( ( )1 1

n j x x y yij i j

nn x x y yiij jj j

= − −
=

 
− −  = =

 

 

 

(Eq.7.9) 
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Where, n is the sample size, ix
, iy

, and ijx
 indicate the individual sample point which 

is indexed with i and 1

1

= 
=

x x
in j

is the sample mean, which corresponds to y . 

7.6.5 Comparison and validation 

The ROC curve is a beneficial tool for quality comparison, probabilistic, & prediction 

determination (Swets, 1988; Park et al., 2004). This curve also combines the 

sensitivity and specificity error matrix. An AUC (area under the curve) value (0.5 to 1 

.0) of the ROC curve indicates a perfect match (Yesilnacar and Topal, 2005). Finally, 

the FHR assessment result has been validated by sixty field locations of healthy and 

unhealthy trees in the Saranda forest based on the ROC curve.  ROC curve is given by 

Eq.7.10. 

(x x )(y y y /2)
1 1

1

= − − − + +
=

n
y

i i i i i
i

 
(Eq.7.10) 

Where, y denotes the area under the curve (AUC).  & x indicates the 1-specificity 

(sensitivity).  

Relationship between forest health risk, distance from mines with foliar dust 

concentration 

Two primary iron ore mines (Kiriburu and Meghahataburu) are located in the study 

region, and these mines affect forest health as well as the ecosystem. We have tried to 

establish a relationship between the forest health risk (0 to 1 scale), distance from 

mines (meter), and foliar dust concentration (gm/m2) in the two mines buffer areas. 

The foliar dust concentration data were collected from the paper in the study region 

(Kayet et al., 2019.b). The distance of twenty sample points of FHR from mines has 

been calculated using ArcGIS software's measurement tool. 
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Figure.7.1: Overall flowchart of FHR assessment and prediction 

7.7 Results and Discussion 

7.7.1 Present and predicted factors 

Since the study area was located in the mining field, it induces a lot of problems to 

forest health, which entails forest health monitoring. All the causative factors of forest 

health were classified and assigned sub weighted values based on the literature review, 

field experience, and specific study area (Appendix.4). Based on the trial & error 

approach, the numbers of classifying features have been considered to maximize the 

informative representation. The maps of twenty-eight (twenty present and six 

predicted) factors for the years present and predicted are shown in Figure.7.2 (a, &b 
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Figure 7.2.a: Present causative parameters of forest health  

 



125 

 

 

Figure 7.2.b:  Predicted causative parameters of forest health (2030 (a) & 2050 (b)) 

7.7.2 Forest realth risk assessment and prediction in mines surrounding sites 

For the mining-affected forest area, FHR assessment as well as prediction in present 

and predicted time domain had been performed by twenty-eight causative factors 

using multi-criterion based AHP model in GIS framework. Final normalized-weighted 

results were calculated and integrated with all causative factors using the AHP model 

for FHR assessment and prediction (Table.7.1).   

Table 7.1:  Final normalized weighted of forest health causative parameters 

developed from AHP-based model  

 

Features 

T R WS D S L G LU FH FD TSD TS N D S M L HS FD MD RD SD Normalized 

weights 

Temperature  °C (T) 7/7 7/5 7/4 7/7 7/4 7/3 7/5 7/4 7/9 7/8 7/8 7/6 7/3 7/6 7/5 7/5 7/7 7/8 7/8 7/7 7/7 7/3 0.058 

Rainfall (mm) (R) 5/7 5/5 5/4 5/7 5/4 5/3 5/5 5/4 5/9 5/8 5/8 5/6 5/3 5/6 5/5 5/5 5/7 5/8 5/8 5/7 5/7 5/3 0.031 

Wind speed (m/s) (WS) 4/7 4/5 4/4 4/7 4/4 4/3 4/5 4/4 4/9 4/8 4/8 4/6 4/3 4/6 4/5 4/5 4/7 4/8 4/8 4/7 4/7 4/3 0.043 

Drought (D) 7/7 7/5 7/4 7/7 7/4 7/3 7/5 7/4 7/9 7/8 7/8 7/6 7/3 7/6 7/5 7/5 7/7 7/8 7/8 7/7 7/7 7/3 0.058 

Soil (S) 4/7 4/5 4/4 4/7 4/4 4/3 4/5 4/4 4/9 4/8 4/8 4/6 4/3 4/6 4/5 4/5 4/7 4/8 4/8 4/7 4/7 4/3 0.033 

Lithology (L) 3/7 3/5 3/4 3/7 3/4 3/3 3/5 3/4 3/9 3/8 3/8 3/6 3/3 3/6 3/5 3/5 3/7 3/8 3/8 3/7 3/7 3/3 0.025 

Geomorphology (G) 5/7 5/5 5/4 5/7 5/4 5/3 5/5 5/4 5/9 5/8 5/8 5/6 5/3 5/6 5/5 5/5 5/7 5/8 5/8 5/7 5/7 5/3 0.041 

LULC (LU) 4/7 4/5 4/4 4/7 4/4 4/3 4/5 4/4 4/9 4/8 4/8 4/6 4/3 4/6 4/5 4/5 4/7 4/8 4/8 4/7 4/7 4/3 0.033 

Forest health (FH) 9/7 9/5 9/4 9/7 9/4 9/3 9/5 9/4 9/9 9/8 9/8 9/6 9/3 9/6 9/5 9/5 9/7 9/8 9/8 9/7 9/7 9/3 0.075 

Forest density (FD/T) 8/7 8/5 8/4 8/7 8/4 8/3 8/5 8/4 8/9 8/8 8/8 8/6 8/3 8/6 8/5 8/5 8/7 8/8 8/8 8/7 8/7 8/3 0.066 
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Plant diversity (PD) 8/7 8/5 8/4 8/7 8/4 8/3 8/5 8/4 8/9 8/8 8/8 8/6 8/3 8/6 8/5 8/5 8/7 8/8 8/8 8/7 8/7 8/3 0.066 

Tree species (TS) 6/7 6/5 6/4 6/7 6/4 6/3 6/5 6/4 6/9 6/8 6/8 6/6 6/3 6/6 6/5 6/5 6/7 6/8 6/8 6/7 6/7 6/3 0.025 

NDVI (N) 3/7 3/5 3/4 3/7 3/4 3/3 3/5 3/4 3/9 3/8 3/8 3/6 3/3 3/6 3/5 3/5 3/7 3/8 3/8 3/7 3/7 3/3 0.025 

Deforestation (D) 6/7 6/5 6/4 6/7 6/4 6/3 6/5 6/4 6/9 6/8 6/8 6/6 6/3 6/6 6/5 6/5 6/7 6/8 6/8 6/7 6/7 6/3 0.025 

Slope ° (S) 5/7 5/5 5/4 5/7 5/4 5/3 5/5 5/4 5/9 5/8 5/8 5/6 5/3 5/6 5/5 5/5 5/7 5/8 5/8 5/7 5/7 5/3 0.041 

Altitude (m) 5/7 5/5 5/4 5/7 5/4 5/3 5/5 5/4 5/9 5/8 5/8 5/6 5/3 5/6 5/5 5/5 5/7 5/8 5/8 5/7 5/7 5/3 0.041 

LST°C (L) 7/7 7/5 7/4 7/7 7/4 7/3 7/5 7/4 7/9 7/8 7/8 7/6 7/3 7/6 7/5 7/5 7/7 7/8 7/8 7/7 7/7 7/3 0.058 

Hot spot (HS) 8/7 8/5 8/4 8/7 8/4 8/3 8/5 8/4 8/9 8/8 8/8 8/6 8/3 8/6 8/5 8/5 8/7 8/8 8/8 8/7 8/7 8/3 0.066 

The FHR maps of the study area, for the years present and predicted are shown in 

Figure.7.3.  

 

Figure.7.3:  Comparative results of forest health risk (Present and predicted years) 

The FHR maps thus prepared were classified into five different classes (namely very 

high, high, moderate, low, and very low). Table.7.2 shows how the FHR classes 

changes for the present and predicted years.  

Table. 7.2:  Zone-wise spatial coverage (%) of FHR results   
Area (%) 

Forest health risk (FHR) 

classes 

Present Predicted (2030 ) Predicted (2050) 

Very low risk 18.87 16.83 15.40 

Low risk 32.68 33.78 33.62 

Moderate risk 31.98 30.63 30.42 

High risk 13.63 15.24 16.68 

Very high risk 2.85 3.49 4.06 
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The magnified view of very high FHR compartments (surrounding two mines) are 

shown in Figure.7.4.The maps suggests that very high FHR zone is located near the 

Kiriburu and Meghahatuburu mines and its surrounding sites. The low FHR zone is 

situated in the upper and the lower hillsides of the study area. 

 

Figure.7.4: Magnified view of the comparative FHR results (Present and predicted 

years) of areas surrounding the mines 

In the study region, some forest compartments (Table.7.3) have very high FHR in 

present as well as in future too.  

Table 7.3: Identification of very high forest health risk compartments in study area 

 

Sasangda forest range compartments IDs 

A-23 KP-4 KP-25 

K-1 KP-12 KP-28 

G-22 KP-13 KP-27 

G-24 KP-14 KP-30 

G-25 KP-16 KP-31 

G-26 KP-17 KP-33 

G-28 KP-23 KP-34 

G-23 KP-24 TK-47 

7.7.3 Identification of sensitive factors 

Twenty-two forests health-related causative factors of present and six of predicted 

were used for sensitivity analysis. Table 7.4 shows the sensitivity analysis results of 

the causative factors. In the study area, the highly sensitive factors that affect the FHR 

most include temperature, drought, wind speed, altitude, slope, deforestation, plant 
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diversity LST, hot spot, foliar dust concentration, distance from mines, roads, and 

settlements. 

Table. 7.4: Sensitivity analysis results of all forest health causative parameters 

 

i Features Very low 

risk 

Low 

risk 

Moderate 

risk 

High 

risk 

Very 

high 

risk 

1 Temperature (°C) +2.03 -0.62 +2.69 -1.48 +2.39 

2 Rainfall (mm) +1.87 -1.25 +1.31 -1.64 -0.29 

3 Wind speed (m/s) (WS) -1.89 -2.10 +3.55 +0.52 -0.08 

4 Drought +2.37 -1.59 -1.12 +0.37 -0.04 

5 Soil -1.54 -1.77 +1.87 +1.66 -0.22 

6 Lithology +1.38 -0.11 +0.34 -1.66 +0.06 

7 Geomorphology +1.06 +0.95 +0.67 -1.41 -0.28 

8 LULC -1.02 +0.80 +1.42 -0.90 -0.29 

9 Forest health +0.03 +0.38 +1.20 -1.21 -0.39 

10 Forest density +1.08 -1.43 +1.93 +0.02 +0.40 

11 Plant diversity -1.49 -1.34 +3.90 -0.76 -0.31 

12 Tree species +0.84 -1.65 +1.12 -0.38 +0.72 

13 NDVI -0.67 -0.85 +1.81 -1.86 -0.43 

14 Deforestation +2.76 +3.03 +0.47 -5.03 -1.22 

15 Slope ° +1.03 +0.50 -2.21 -0.17 -0.15 

16 Altitude (m) +2.85 +1.91 -1.07 -5.40 -0.28 

17 LST (°C) -0.73 -0.62 +5.68 -3.60 -0.74 

18 Hot spot +1.19 +0.11 +1.92 -2.79 -0.43 

19 Foliar dust (g/m2) +0.91 +0.46 +1.20 -2.50 -2.02 

20 Distance  from mines  +1.61 -2.97 +0.75 -2.38 -1.01 

21 Distance  from roads +1.65 +2.22 -0.71 -2.56 +0.40 

22 Distance  from settlements  -1.87 +0.58 +2.10 -0.72 -0.09 

Bold values indicate significant results 
 

7.7.4 Correlation of sensitive factors 

The Person correlation matrix of FHR and sensitive factors are shown Table.7.5. In 

most cases, the relationships are showing positive results. The results show that some 

causative parameters (temperature, wind speed, slope, drought, deforestation, LST, hot 

spot, foliar dust concentration, distance from mines, roads, and settlements) are a high 

positive correlation with FHR. The FHR and sensitive factor’s pixel values have been 

calculated based on sixty field sample points (Appendix.5). 
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Table 7.5.  Person correlation matrix of sensitive parameters with FHR  

 

Pearson 

Correlation 

FHR DM D FD LST T DF PD HS S WS DR DS A 

FHR 1 .33 .16 -.32 -.24 .28 .16 .23 .42 .19 .14 .16 .30 
.30 

DM .33 1 .55 -.28 -.39 -.21 .20 -.13 .23 -.43 -.34 .28 -.19 
.16 

D .26 .55 1 -.21 -.19 -.30 .23 -.23 .15 -.64 -.25 .12 -.50 
.26 

FD -.22 -.20 -.21 1 .28 -.27 .22 .25 -.14 .82 .23 -.22 -.24 
-.17 

LST -.04 -.09 -.19 .28 1 .31 .37 .23 .18 .32 -.17 .17 .17 
.33 

T .28 -.31 -.30 -.17 .31 1 .27 -.21 .50 .28 -.69 .77 .27 
.46 

DF .16 .10 .23 .32 .27 .47 1 -.21 .23 -.22 -.16 .13 -.14 
.23 

PD .33 -.23 -.23 .25 .33 -.31 -.21 1 -.20 .21 .20 -.16 -.14 
-.15 

HS .42 .23 .25 -.14 .18 .50 .23 -.20 1 -.22 -.48 .60 .16 
.53 

S .39 -.43 -.64 .18 .13 .22 -.32 .11 -.22 1 .22 -.19 .29 
-.22 

WS .24 -.34 -.25 .23 -.37 -.69 -.36 .20 -.48 .22 1 -.89 .11 
-.45 

DR .12 .28 .22 -.22 .27 .77 .23 -.16 .60 -.09 -.89 1 .22 
.49 

DS .30 -.21 -.50 -.24 .33 .27 -.24 -.24 .36 .29 .21 .12 1 
.20 

A .30 .16 .26 -.17 .23 .46 .23 -.15 .53 -.22 -.45 .49 .10 1 

(N-=60) FHR- Forest health risk, DM Distance  from mines, D-Drought, FD- Foliar dust   ,LST- Land surface temperature, T- Temperature, DF- 

Deforestation ,PD- Plant diversity, HS- Hot spot, WS- Wind speed , DR-  Distance from roads, DS – Distance from settlements  , A- Altitude 

7.7.5 Comparison and validation 

The FHR present result is validated by sixty field locations of healthy, moderate 

health, and unhealthy trees (Appendix.6). The ROC curve of the present and predicted 

is shown in Fig.7.5. The AUC value of FHR for the years present and predicted is 

0.76, 0.72, and 0.68. 

 

Figure.7.5:  ROC Curve for FHR results comparison (Present and predicted years) 
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The FHR normalized data (Appendix.7) for the years present and predicted are shown 

in a scatter matrix plot (Fig.7.6). The scatter matrix result shows that the correlation 

and RMSE values between the years present and predicted (2030) are 0.55 (R2) and 

0.011 (RMSE), respectively. Between the predicted years (2030 & 2050), it is 0.49 

(R2) and RMSE (0.015), and between the years present and predicted (2050), it is 

0.33(R2) and 0.017(RMSE), respectively.  

 

Figure.7.6: Scatter matrix plot of  FHR(Present and predicted years) 

7.7.6 Relationship between forest health risk, distances from mines with foliar 

dust concentration  

Fig.7.7 has shown the relationship between forest health risk and distance from two 

mines (Meghataburu and Kiriburu) with foliar dust concentration. It indicated an 

inverse (negative) relationship between the FHR index and distance from mines with 

foliar dust concentration. We have also observed a clear negative correlation between 

mines and forest health during field survey time. 
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Figure 7.7:  Relationship between forest health risk, distances from mines with foliar 

dust concentration 

7.7.7 Discussion 

 

The forest health risk is one of the significant environmental issues as vast forest 

cover areas are losing daily. Climate change, increasing mining, agricultural, and 

tribal people's allied activities are causing forest health risks in the study region. 

However, in this study, FHR assessment and its future impact are predicted in the 

mining-affected forest area by AHP model-based multi-criteria analysis in a GIS 

framework.  

In this work, twenty-eight forest health-related climate, natural or geomorphic, 

forestry, environmental, and anthropogenic factors have been assessed for assessment 

and prediction of FHR. Some researchers used physical and anthropogenic parameters 

to assess deforestation and mangrove susceptibility (Saha et al., 2020; Chakraborty et 

al. 2019). They also showed some causative parameters (temperature, rainfall, wind 

speed, drought, soil, lithology, geomorphology, LULC, slope, altitude, LST, NDVI, 

agricultural, distance from mines, road, and settlement) play a significant role in 

causing forest degradation and deforestation. We have used the AHP model based on 

the multi-criteria analysis in a GIS platform to assess and predict FHR. Some 

researchers used multi-criteria based statistical models (frequency ratio (FR), logistic 

regression (LR), analytic hierarchy process (AHP), and random forest (RF)) in a GIS 

platform to determine the environmental vulnerability, forest fire risk, and 

deforestation suitability (Sahoo et al., 2019; Kayet et al., 2018; Sahana et al., 2018). 

They showed that RF and AHP are of higher accuracy than other models.  
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In this study, FHR assessment and prediction results show that very high-risk zones 

are located in some forest compartments in the Saranda forest. These compartments 

are situated in the surrounding sites of Kiriburu and Meghataburu mines. These 

reasons behind these increments are mining activities, environmental pollution, 

climate change, and human interface in the study area. The upper and lower hilly 

sections of the study area show low health risks because those forest compartments 

areas are far from the mines and in the dense forest. Some studied forest degradation 

in the mining-affected forest region (Sonter et al., 2017; Ranjan et al., 2019). They 

also have shown high susceptibility class in mines, transport, agricultural, and 

settlement's surrounding sites. In this work, a sensitivity analysis was performed by 

causative factors of forest health. The results show that some parameters (temperature, 

LST, hot spot, wind speed, deforestation, foliar dust, drought, altitude, slope, plant 

diversity, and distance from mines, roads, settlements) are most sensitive in this study 

area due to climate change, deforestation, mining, and human allied activities. Some 

authors have studied the sensitivity analysis of mangrove and environmental 

suitability assessment in India (Sahoo et al., 2019; Chakraborty et al. 2019). They 

have found that some parameters (max temperature, slope, soil moisture, LULC, soil 

salinity, wind speed, agricultural transportation, and population, activates) are 

susceptible to mangrove and environmental suitability assessment. 

This study used sensitive factors that directly or indirectly affect forest health. The 

correlation results between FHR and the most sensitive factors show most of the 

factors are a positive relationship with FHR. Tuominen et al., (2009) and Kayet et al., 

(2019) worked on forest health in mining-affected forest regions. They showed most 

of the sensitive parameters are a clear inverse relationship with forest health risk. The 

study has been shown that validation and comparison of AHP model-based FHR 

results using the ROC curve. An AUC value (0.76) indicates that present result 

validation accuracy is perfectly matched with the field obtained locations. Some 

researchers have used the ROC curve to validate their results of forest fire risk and 

deforestation susceptibility (Ljubomir et al., 2019; Sahana et al., 2018). They showed 

of AUC values 0.86 (forest fire) and 0.79 (deforestation susceptibility). For the 

comparison of three FHR data sets, we used a scatter matrix plot. The correlation 

result shows that moderately strong relationship (R2-0.55 and RMSE-0.011) between 

the present and predicted (2030) years. Between the two predicted years (2030 & 
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2050), it is a low, moderate relationship (R2-0.49 and RMSE-0.0151), and the years of 

present and predicted (2050), it is a low relationship (R2-0.33 and RMSE-0.017) due 

to longer time span. Evangelista et al. (2011) worked on forest vulnerability and 

potential distribution based on present and predicted climate conditions for 2020 and 

2050. They had shown a low, moderate relationship between 2020 and 2050 year’s 

results. This study has shown a negative co-relationship between forest health risk and 

the distance from mines with foliar dust concentration. Some researchers also showed 

a negative co-relationship between forest health and distance from mines with dust 

concentration (Tuominen et al., 2009; Kayet et al., 2019).  

In this work, some errors have come from the following sources: (1) the inherent 

errors in acquiring the Hyperspectral and multispectral data have created some noise, 

and also, the atmospheric errors affected the result. (2) All satellite data used here are 

of medium spatial resolution (30m), so a problem of mixed pixels also induces error 

on the end results. (3)The multi-criterion method is entirely based on the weight 

assignment, so it may also induce some error. (4) The study area is located in the hilly 

and dense forest region, so shadow and canopy effect errors are obvious. However, we 

have developed a spatial framework methodology for the assessment and prediction of 

FHR using the AHP model at Kiriburu and Meghataburu mining-affected forest 

region. This research work is framed by considering geo-environmental planning and 

management of the mining-affected forest region. This work is a significant step for 

protecting forest health, biodiversity conservation, and effective management of the 

forest. 

7.8 Summary  

Forest health risk assessment and its prediction are essential for forest planning and 

management to aid in forest policy. In this study, a total of twenty-eight (twenty-two 

present and six predicted) causative factors are coupled with multi-criteria based AHP 

model in a GIS framework for FHR assessment and prediction at Kiriburu, and 

Meghataburu mining-affected forest region. The result shows that the mining area will 

increase in the future as well as with a corresponding increase in the risk to forest 

health due to the mining and allied activities. The assessment results also portrayed 

that most of the very-high FHR class is close to mining sites. Very high FHR zones 

are situated at the Kiriburu, and Meghataburu mining surrounding forest 
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compartments (KP-14, KP-33, KP-32, KP-34, KP-23, KP-24, and KP-31).Predicted 

FHR (2050) results also show that, these compartments are at high risk. 
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