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6.1 Overview  

The iron ore plays a significant role in the socio-economic development, but on the other 

hand, such a supply can also induce negative impact on environment and forest ecology. 

Dust affects the plants, physically, chemically as well as biochemically. Dust may cause a 

reduction in the plants growth, decrease in the production of fruit, necrosis of the leaves, 

and change in the community structure of the plants. So it is essential to implement forest 

management and environmental monitoring in surrounding mining regions. This chapter 

imputes the methodology for foliar dust estimation and mapping using hyperspectral 

satellite imagery and field obtained foliar dust data for environmental monitoring in an 

open cast mining areas. 

6.2 Data acquisition and pre-processing  

6.2.1 Data used 

In this study, we had used four different remote sensing data. All of them had different 

sensors, bandwidths, sun angles, and different times but their spatial resolutions are the 

same. Two of them were multispectral data, i.e., Landsat 5/TM (2005); Landsat 8/OLI 

(2016), and the other two were hyperspectral data, i.e., EO-1 Hyperion (2005 and 2016). 

The satellite images were downloaded from the USGS website. The path and row of the 

satellite image scenes were 140 and 45, respectively. The secondary data were (base map, 

topo sheet, road network, mining plan, and forest data, and Google Earth image) collected 

from different sources like government offices, etc. 

6.2.2 Instruments used 

For foliar dust spectral signature collection, we had used a portable field 

Spectroradiometer. The field spectra containing 1024 bands at 1 nm (Visual), 2.5 nm 

(NIR), and 5 nm (SWIR) interval were then reassembled to process 198 bands using full 

width at half maximum (FWHM) wavelength method. For foliar dust accumulation, we 

had used the PCE Instrument (Model: PCE-RCM10). PCE-RCM 10 is a portable 

handheld particle counter used to monitor particulate dust matter (PM) concentrations in 

the air. This instrument has particulate matter (PM) channels: PM 2.5, PM 10, and 

particle sizes (in micrometers): 2.5 µm, 10 µm. Garmin Etrex20x GPS had been used to 

locate sample location i.e., its latitude and longitude. 
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6.2.3 Field survey 

Dust affected forest trees and vegetation were observed and inspected during the field 

survey (Figure.6.1). For foliar dust estimation and vegetation change analysis, the field 

survey dust and spectra data were used for the justification of results. 

 

Figure.6.1: Vegetation affected by mining generated dust in the study area 

The location of foliar dust samples and unchanged areas were depicted as symbols in the 

study area ground survey map (Figure.6.2). During the field survey, in and around the 

mining area, we had noticed that the primary reason for the decline of vegetation or tree 

health is dust emitted by the mining activities (in this case, iron ore dust) as well as 

transportation of the mined out material.   
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Figure 6.2: (a) Masking map used to eliminate  forest and dust pixels (left) , (b) 

Ground truth map indicating of collected filed dust samples and unchanged areas 

location (Right) 

At the time of field sample collection, there was no precipitation, and the weather was 

bright and sunny. Since remotely sensed data (via. Hyperion: narrow-bands and Landsat 

TM/OLI: broad-bands satellite images) were used in this study for dust appraisal, the 

sampling plot size was set to 30×30 meter to match the satellite images pixel size (30 ×30 

meter). About 20 dust samples were collected from the study area. The location of four 

unchanged areas (the area not affected by dust) were recorded using GPS (Garmin 

Etrex20x). Field-based Spectroradiometer recorded the 20 dust affected tree leaf spectra. 

The field spectra were collected by a single fiber-optic light guide (SMA905) having the 

field of view of 180°; the purpose is to cover the compound reflectance since the dust and 

dust affected tree leaf are related. 
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6.2.4 Laboratory experiment 

First, we had collected twelve to eighteen Sal and Teck tree leafs dust and cleansed the 

leaf with distilled water in the laboratory. Then dust was driven out by keeping it at 60 

°C, and the differential weight gave the dust amount. Then the area of leaf and weight of 

dust were measured to analyze the weight of dust per unit area (g/m2) a relationship was 

established between leaf spectra and dust amount (g/m2). We had collected dust affected 

tree leaves from mining roads, tailing ponds, dumps, and mining sites. The dusty leaf 

spectra for each sample were recorded by field Spectroradiometer in the laboratory, and 

averaged spectra were used for correlation with VIs value. The dust sample was analyzed 

in the laboratory (Figure.6.3). 

6.2.5 Landsat and Hyperion data pre-processing 

Two different (Hyperspectral and multispectral) data were used for this study (Hyperion 

2005 and 2016, Landsat 5/TM 2005, and Landsat 8/OLI 2016). Though both the images 

were from the same time, the pre-processing image method for these two (Hyperspectral 

and multispectral) images is the same. At first, both images were downloaded from the 

USGS website. Hyperion and Landsat data, both were projected to a UTM projection 

system at WGS 84 datum, and zone 45° north. Then they were radiometrically and 

 

Figure 6.3:  Laboratory experiment for validation   
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geometrically corrected. Then for atmospheric correction, the FLAASH (Fast Line-of-

Slight Atmospheric Analysis of Spectral Hypercubes) module of ENVI software was 

used. Then band math was used to insert radiance into reflectance data. The equation for 

converting radiance into reflectance is given below (Equation.6.1) 

2r = p×L ×d / ESUN ×cosq
s  
        (Eq-6.1) 

where, ρ
λ
is planetary reflectance (unitless), L is used spectral radiance at the sensor's 

aperture, d represents earth-sun distance in astronomical units, ESUN

is used for mean solar 

atmospheric irradiances, VI
2016

 ( cosq
s
) is used for solar zenith angle in degrees. 

6.3 Methodology  

6.3.1 Healthy and dust contaminated areas detection  

There are many causes for the degeneration of forests, such as air dust pollution, diseases, 

drought, soil, and weather condition. Hyperspectral remote sensing has already 

demonstrated its ability to detect dust and seepage contaminated forest area (Tuominen 

and Kuosmanen, 2008). Narrowly banded vegetation indices classes were considered for 

sample pixels on the field locating healthy and defoliated sample points. The healthy and 

defoliated pixels were used to calculate the Separability (S) choice using Equation.6.2 

(Landgrebe, 2003). 

1 2

1 2

−
=

+

u u
S

   
    (Eq.-6.2) 

Where, mu and sigma are the mean and SD (standard deviation) of a particular healthy 

and unhealthy class. Separability (S) choice values have been used for vegetation 

combinations analysis. At first, we had analyzed VIs combination, and it was used to 

locate dust seepage contaminated forest and mining area. Different VIs combinations 

were tested, and the number of pixels classified as stressed in the healthy and 

contaminated dust area (%) was calculated by Equation.6.3. 

Area (H U)diff = −  
              (Eq.-6.3) 
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Where, H & U are the healthy (%) and unhealthy pixel area (%). The best VIs 

combination was used for classified as healthy and contaminated dust pixels. 

6.3.2 Dust covered leaf spectra 

Ma et al., 2017 have studied of dust covered leaves spectra with different dust amounts. 

In spectral reflectance study, the red wavelength region was increased because of reduced 

chlorophyll absorption, and the near-infrared region was decreased due to the reduced 

leaf cell vigor, and shifts in the red edge. We have collected leaf dust spectra with 

different dust amount for the foliar dust analysis. 

6.3.3 Vegetation indices (VIdiff) for foliar dust estimating 

Eight common VIs (Ma et al., 2017) were selected to estimate the foliar dust in the study 

area. It was used to calculate and analyze their correlation with the amount of dust 

covered the leaves so that according to the calibrated relationships with VI differences 

(VIdiff), the final foliar dust can be spectrally assessed. The eight common narrow banded 

(Hyperion) and broad-banded VIs are shown in (Table.6.1). 

Table 6.1: Summary of eight narrow-banded and broad-banded vegetation indices (VIs) 

VIs 

 

Narrow bands 

Algorithm 

 

Broad-bands 

Algorithm 

 

Applications References 

SR 

(Simple Ratio) 

 

 







 

NIR

R




 

It is used in this project 

because by knowing the 

vegetation status of the 

study area, we can analyze 

the change and unchanged 

areas between before and 

after mining image 

C. F. 

Jordan, 

1969 

NDVI 

(Normalized 

Difference 

Vegetation Index) 

 
864 660

864 660

NIR R

NIR R

 

 

−

+
 

NIR R

NIR R

 

 

−

+
 

This index is used because 

it has the ability to reduce 

many forms of 

multiplicative noise like 

sun illumination 

difference, cloud shadows, 

some atmospheric 

attenuation, some 

topographic variations that 

are present in multi-date 

imagery 

Baret, & 

Guyot 

,1991 

SAVI 

(Soil Adjusted 

Vegetation Index) 

( )(1 )864 660

( )864 660

NIR R L

NIR R L

 

 

− +

+ +
 

L=0.5 in this 

study 

( )(1 )

( )

NIR R L

NIR R L

 

 

− +

+ +
 

L=0.5 in this 

study 

This index is widely used 

for minimizing the 

influence of soil 

brightness. It can be used 

to describe the dynamic 

soil-vegetation systems 

from satellite imagery 

Huete,et al, 

1988 
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TSAVI 

( Transformed Soil 

Adjusted 

Vegetation Index) 

( )864 660
2(1 )864 660

a NIR a R b

a NIR R ab X a

 

 

− −

+ − + +

 

a=slope of the soil 

line, 1.2 in this 

study 

b=soil line 

intercept, 0.06 in 

this study 

X=adjustment 

factor to minimize 

soil noise, 

0.08 in this study 

( )

2(1 )

a NIR a R b

a NIR R ab X a

 

 

− −

+ − + +

 

a=slope of the 

soil line, 1.2 in 

this study 

b=soil line 

intercept, 0.06 

in this study 

X=adjustment 

factor to 

minimize soil 

noise, 

0.08 in this 

study 

It is almost similar to 

SAVI to reduce the soil 

background effect, but it 

uses the parameter of the 

soil line. It is a modified 

form of SAVI to 

compensate for soil 

variability due to changes 

in solar elevation and 

canopy structure 

Baret and 

Guyot, 

1991 

PVI 

( Perpendicular 

Vegetation Index) 

1
( )864 660

21

NIR a R b

a

 − −

+

 

a=slope of the soil 

line, 1.2 in this 

study, 

b=soil line 

intercept, 0.06 in 

this study 

1
( )

21

NIR a R b

a

 − −

+
 

a=slope of the 

soil line, 1.2 in 

this study, 

b=soil line 

intercept, 0.06 

in this study 

It is used to eliminate the 

difference in soil 

background and is most 

effective under conditions 

of low LAI, applicable for 

arid and semiarid regions 

Huete,et al, 

1988 

NLI( Non-Linear 

Index) 

2( )864 660
2( )864 660

NIR R

NIR R

 

 

−

+

 

2( )

2( )

NIR R

NIR R

 

 

−

+

 

It is used for removing leaf 

angle distribution 

influence and view 

azimuth effect 

Goel and 

Qin, 1994 

MSR( Modified 

Simple Ratio) 

 
864( ) 1

660

864 1
660

NIR

R

NIR

R









−

+

 ( ) 1

1

NIR

R

NIR

R







−

+  

It is a used for knowing the 

vegetation condition 

because it is less sensitive 

to canopy optical and 

geometrical properties 

Chen, 

1996 

 

 

 

TC greenness( 

Tasselled Cap 

Transformation 

Greenness) 

 
0.2787Blue 0.2174Green 0.5508Red

518 559 660

0.7221NIR 0.0773SWIR1 0.1648SWIR2
864 1608 2203

 − − −

+ + −

 

0.2787Blue 0.2174Green 0.5508Red

0.7221NIR 0.0773SWIR1 0.1648SWIR2

− − −

+ + −

 

It is used to describe the 

amount of green biomass 

in the study area 

Mountraki

s, 2009 

Note: ρR and ρNIR are reflectance in red (i.e., Landsat TM, OLI) and near-infrared (i.e., TM, OLI ) 

wavelength respectively. 

6.3.4 VIs differencing (VIdiff) Landsat and Hyperion images 

After pre-processing of multispectral images, eight different vegetation indices (VIs) 

images were extracted from the hyperspectral and multispectral data. The following eight 

different VIs were used to calculate and analyze their correlation with ground-based dust 

measurement.  

As the two multispectral data (Landsat OLI and Landsat TM) were obtained under the 

light, and different sensor condition, there would be differences in calculating VIs.  So, to 

overcome these problems, some unchanged areas based on field survey observation were 

selected to analyze the cross-image VI diff by the following Equation 6.4: 

VI VI VI
Cross OLI TM

= −
 (Eq-6.4) 
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Where, VIcross is the VI diff value in the unchanged area. VI OLI and VI TM are the 

values calculated from Landsat OLI (2016) and Landsat TM (2005) image.  

From the unchanged area samples, mean and standard deviation (σ) were calculated. The 

standard deviation (σ) value for different VIs of the unchanged area sample was 

multiplied by a constant (γ, which is from 2.5 to 3.5) which is often used to determine the 

threshold was used for detecting unchanged and changed vegetation in the study area (Lu 

et al., 2005). The constant value (γ) was set to 3.5, considering the difference in sensors, 

atmospheric condition, and solar illumination. For the entire image, VIcross was assumed 

spatially uniform. It was used to compensate the image difference because the imaging 

conditions between the two images were different. For calculating VI difference the 

following Equation. 6.5 is used. 

( ) ( )2016 2005Lansat OLI Landsat TM
VI VI VI VIDiff Cross= − −  

  (Eq-6.5) 

Where, VIDiff is the VI difference, VI2005 is the VI value calculated since 2005 Landsat 

TM image. VI2016 is the VI value calculated from 2016 Landsat OLI image.  

In the hyperspectral image, after pre-processing, eight different VIs images are 

extracted. Similarly, these eight different VIs for Hyperion image are used for 

calculating and analyzing their correlation with dust amount. As the hyperspectral data 

of the same sensor is available for determining change detection, (so no need to cross 

value calculation) the following Equation.6.6 is used for calculating the VI difference 

(VIDiff). 

( ) ( )2016 2005
VI Hyperion HyperionVI VIDiff = −          (Eq-6.6) 

Where, VIDiff is the VI difference, VI 2016 is the VI value obtained since the Hyperion 

satellite image of 2016 and VI 2005 is the VI value calculated from the Hyperion 

image of 2005. 

6.3.5 VIs selection Landsat and Hyperion images 

The detection of change in vegetation and its analysis in two iron mining areas is done 

by measuring the amount of dust accumulation on tree’s leaf. The foliar dust is then 

estimated and on the basis of this the optimal VIs is selected.  
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Also, the optimal VIs will be selected based on the ground-based dust estimation 

result produced by comparing VI diff. based polynomial linear regression statistical 

model derived from the lab leaf dust spectra. The optimal VIs should have statistical 

criteria, such as the highest correlation coefficient (R) value and with the lowest 

RMSE.  The following statistical equation were used for calculating the correlation 

coefficient (Equation.6.7), the coefficient of determination (Equation.6.8) and root 

mean square error (Equation.6.9). 

( )( )

2 2( ) ( )

x x y y
R

x x y y

 − −
=

 −  −  

(Eq-6.7) 

( )( )2 2R ( )
2 2( ) ( )

x x y y

x x y y

 − −
=

 −  −  

(Eq-6.8) 

2( )
1RMSE

n P O
i i i

n

 −
==

 

(Eq-6.9) 

Thus the relationship between the eight different VI and foliar dust samples were 

collected from the study area. VIs values were also obtained and rescaled to 0 to 1. 

This will help in estimating the dust differences extracted from the two Landsat 

images.  In 2005 Landsat TM image dust amount was set to 0. Consequently 2016 

Landsat OLI image, the dust volume would be given by the following Equation. 6.10. 

DiffD VI L= 
 

(Eq-6.10) 

Where, D is the dust volume in the year 2016 of the Landsat image, VI Diff is the VI 

difference between VI 2016 and VI 2005 of the Landsat image and L is a coefficient 

value derived from laboratory results. 

In the same way as multispectral, it is essential to choose an optimal VI to estimate the 

better dust result in the mining area. The in situ measured value is compared with 

different VIs value to get the optimal VI as in the multispectral. Then the VI with the 

highest correlation coefficient (R) value and lowest root mean square is selected as 

optimal VI.  

Therefore, Equation.6.10 is used to estimate the dust amount in EO-1 Hyperion image 

acquired in 2016. But in the case of hyperspectral data, VI difference image produced 
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from Equation.6.6 is used in Equation.6.10 and the coefficient value derived from the 

laboratory results. 

6.3.6 Foliar dust estimation and accuracy assessment 

The foliar dust estimation, vegetation change, and spatial patterns were analyzed for two 

iron ore mines sites with the help of ancillary data such as Google Earth and toposheets. 

The mining lease boundary, dumps, tailing ponds, local ore transportation roads were 

extracted from Geo-Eye satellite (Google earth image; 0.4-meter resolution) on 

December 5, 2016.  It helps in estimating and mapping foliar dust in the mining sites. The 

overall accuracy of the classified class’s pixels was matched to reference ground data. 

The classified image was calculated overall accuracy and RMSE statistic using field 

surveys reference dust data. By spatial pattern analysis, we compared the accuracy 

assessment between Landsat and Hyperion data, so that got more reliable and accurate 

information about foliar dust in the mining area. The overall research flow chart has been 

shown in Figure 6.4. 

 

Figure.6.4: Research flowchart of foliar dust estimation and mapping 
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6.4 Results and Discussion 

6.4.1 Field measurement of dust samples 

Based on ground truth survey, the vegetation nearby the two iron ore transportation 

roads were significantly affected by the dust, which was emitted from the vehicles 

transporting mining materials. Some field photographs are given below in Figure. 6.5. 

About 20 dust sampling plots were collected and measured using PCE Instrument at 

the two iron mining sites, during the field survey. The minimum and maximum 

amount of dust that was measured from the sampling plots was 4.5432 g/m2 and 

55.3650 g/m2 respectively. 

 

Figure 6.5: Vegetation affected by dust in the study area 

6.4.2 Dust quality detection  

20 dust samples were collected from different ground locations of two iron ore mining 

sites and its surrounding area. The dust samples quality were tested in geo-

environmental laboratory. The dust quality samples result are shown in Table 6.2. The 

GPS location of the 20 sampled areas were identified and matched with the image 

pixel position 
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Table 6.2: Dust quality result of field dust samples (n=20) 

Dust 

sample 

no 

 

Latitude Longitude Foliar dust 

Account (g/m2) 

SO2 (g/m2) NOX 

(g/m2) 

 

1 
22° 6' 12.026" N 

 

85° 16' 47.635" E 

 

42.86199951 

 

70 

 

73 

 

2 
22° 6' 5.040" N 

 

85° 16' 29.999" E 

 

5.350999832 

 

BDL 

 

46 

 

3 
22° 5' 31.050" N 

 

85° 16' 38.574" E 

 

7.624000072 

 

32 

 

52 

 

4 
22° 6' 21.250" N 

 

85° 16' 11.081" E 

 

6.357999802 

 

BDL 

 

48 

 

5 
22° 3' 52.689" N 

 

85° 15' 44.112" E 

 

28.45199966 

 

67 

 

73 

 

6 
22° 4' 4.368" N 

 

85° 15' 18.688" E 

 

19.315899849 

 

56 

 

64 

 

7 
22° 3' 42.930" N 

 

85° 15' 4.238" E 

 

8.475000381 

 

35 

 

55 

 

8 
22° 3' 54.255" N 

 

85° 15' 17.223" E 

 

30.63500023 

 

63 

 

71 

 

9 
22° 1' 55.569" N 

 

85° 14' 49.277" E 

 

23.57500076 

 

57 

 

66 

 

10 
22° 1' 42.351" N 

 

85° 15' 2.208" E 

 

25.36400032 

 

61 

 

68 

 

11 
22° 1' 15.173" N 

 

85° 14' 49.652" E 

 

13.5539999 

 

45 

 

59 

 

12 
22° 1' 4.062" N 

 

85° 14' 31.183" E 

 

24.53200016 

 

59 

 

63 

13 
22° 0' 46.542" N 

 

85° 14' 25.865" E 

 

9.425000191 

 

38 

 

52 

14 
22° 0' 41.466" N 

 

85° 14' 22.507" E 

 

11.23499966 41 

 

57 

 

15 
22° 1' 15.924" N 

 

85° 14' 44.900" E 

 

19.56699944 

 

54 

 

62 

 

16 
22° 4' 48.556" N 

 

85° 16' 1.323" E 

 

50.81399918 

 

78 

 

87 

17 22° 5' 19.198" N 

 

85° 18' 4.780" E 

 

52.35400009 

 

82 

 

89 

 

18 22° 6' 16.701" N 

 

85° 16' 26.726" E 

 

43.25400162 

 

71 

 

70 

 

19 22° 4' 45.995" N 

 

85° 16' 0.216" E 

 

48.52399826 

 

74 

 

86 

 

20 22° 3' 51.771" N 

 

85° 15' 54.222" E 

 

55.36500168 

 

85 
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6.4.3 Detection of healthy and pest inflicted defoliation pixels 

The healthy and defoliated pixel’s mean and standard deviation values are shown in 

Table.6.3. The high S (Separability) value was obtained from MNDVI705, MSI, 

NDNI, and CRI1. Since these VIs correlates well with the chlorophyll content, so it is 

obvious that its performance will be good. Due to the shadow effect of the hilly area 

some VIs result are showing low S (separability) values. S choice values have been 

used for vegetation combinations analysis. 
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Table 6.3: Selection of Separability (S) values for healthy and defoliated areas 

 
 

Healthy Defoliated S 

Narrow 

band 

 VIs 

Index Mean Standard 

Deviation 

Mean 

 

Standard 

Deviation  

Greenness 

Index 

 

MNDVI705 0.66 0.03 0.17 0.08 4.21 

MSR700 0.71 0.15 0.47 0.11 1.11 

RENDVI 0.69 0.16 0.45 0.05 1.07 

REP 0.20 0.09 0.14 0.06 0.39 

VOG1 1.44 1.13 0.06 0.05 2.60 

Canopy 

Water 

Content 

 

MSI 0.53 0.05 0.32 0.146 1.03 

NDII 0.17 0.08 0.16 0.16 0.04 

NDWI 0.19 0.11 0.27 0.11 0.14 

WBI 0.77 0.05 0.26 0.10 0.93 

Light Use 

Efficiency 

Index 

 

NDNI 0.80 0.14 0.43 0.22 0.90 

PRI 0.46 0.11 0.34 0.18 0.70 

RGR Ratio 4.58 2.23 2.54 0.38 0.77 

SIPI 1.156 0.09 1.29 0.13 0.59 

Leaf 

Pigment 

Index 

 

ARI1 74.92 18.48 43.26 14.84 0.94 

CRI1 82.22 12.15 33.29 12.78 1.96 

CRI2 84.88 7.77 46.55 13.32 1.81 

 

6.4.4 Dust and seepage detection based on VIs combinations 

The results of the different vegetation indexes (VIs) combinations are shown in Table 

6.4. On the basis of combinations of VIs result the forest health were classified as 

healthy and contaminated dust class.  

Table 6.4:  Percentage of pixel classified as healthy and dust contaminated areas 

 
Narrow bands VIs 

Combinations 

Healthy 

area (%) 

Dust contaminated area 

(%) 

Difference 

(%) 

MNDVI705, MSI,NDNI,CRI1 34.29 18.56 15.73 

VOG1,WBI,RGR Ratio, CRI2 27.65 12.73 14.92 

MSR700,NDWI,PRI,ARI1 25.42 11.48 13.94 

RENDVI,NDII,SIP1,ARI1 21.63 12.49 9.14 

REP, NDII,SIP1,API1 17.21 10.72 6.49 

The greenness vegetation index had the most impact on the healthy and contaminated 

dust pixels, and other VIs combinations were not shown the good results for healthy 

and contaminated dust pixels classification. Greenness VIs combination attained high 

value due to the high vegetation chlorophyll content. The best greenness VIs 

combination result was obtained with MNDVI705, MSI, NDNI, and CRI1. The 

healthy and contaminated dust areas classification pixels are shown in Figure. 6.6. 
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Figure 6.6: Classified healthy and dust contaminated pixels of study area 

6.4.5 Relationships between foliar dust and field spectra 

The relation between foliar dust and field spectra were observed and it shown the 

increase in amount of dust as well as red reflectance spectra and decrease in near-

infrared reflectance spectra (Figure.6.7).  

 

Figure 6.7: Spectral signature of dust-covered leaf with different foliar dust amounts 

(g/m2) 
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According to the statistical results, all the VIs of both Landsat and Hyperion data were 

extremely correlated with dust amount. Table 6.5 shows the correlation between VIs 

and dust amount.  

Table 6.5: Relationship between VIs value and foliar dust amounts 

 Landsat Hyperion 

VIs Formula R² Formula R² 

MSR y = -45.876x + 46.953 0.77 y = -46.657x + 46.592 0.83 

NDVI y = -53.124x + 52.963 0.81 y = -52.116x + 52.412 0.89 

NLI y = -42.947x + 48.025 0.64 y = -44.808x + 50.347 0.79 

PVI y = -52.468x + 45.767 0.72 y = -53.767x + 56.32 0.81 

SAVI y = -53.241x + 49.14 0.71 y = -54.944x + 55.576 0.78 

SR y = -48.974x + 48.148 0.68 y = -53.292x + 52.85 0.79 

TCgreenness y = -44.933x + 44.223 0.66 y = -48.884x + 48.14 0.74 

TSAVI y = -60.042x + 55.126 0.68 y = -60.664x + 69.56 0.75 

Also, Figure.6.8 shows the statistical regression scatter plot between VIs and foliar 

dust amount. 

 

Figure .6.8:  Relationship between VIs values and foliar dust amounts (g/m2) 

6.4.6 VI  differences and VI selection  

After performing atmospheric correction of the two images of 2005 and 2016, they 

were converted into surface reflectance. Then the eight common VIs of both the 
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images were calculated, and according to the algorithm, the VIcross image was also 

educed. The result of the VICross image (Hyperion and Landsat) calculated values are 

summarized below in Table 6.6 for unchanged area samples. The quantity of dust in 

the image of 2016 can be directly estimated by using the Equation.6.10.  

Table 6.6: Cross-image VI difference between Landsat TM and OLI sensors for the 

unchanged areas 

VIs MSR NDVI NLI PVI SAVI SR TCgreenness TSAVI 

MEAN 0.84 0.02 0.13 0.02 0.06 0.003 0.03 0.07 

SD (σ) 0.31 0.03 0.03 0.01 0.04 0.12 0.04 0.04 

6.4.7 Foliar dust estimation in mining areas 

In this study we have used the standard deviation (σ) value (0.0328) of the NDVIdiff  

of five unchanged (2005 and 2016) area samples. A constant value was multiplied 

with the standard deviation (σ) value (γ, i.e., 2.5 to 3.5) and then it was used to 

calculate the threshold for detecting changed and unchanged vegetation (Lu et al., 

2005). Furthermore, a constant value (γ) was set to 3.5, considering the two different 

sensors i.e., solar illumination, and atmospheric condition (Kuki et al., 2018).The dust 

pollution was deliberated as the primary stress issue for affecting the accrual of 

vegetation in the mining area. According to the laboratory result, when the dust was 

55 g/m2, Landsat based NDVI was decreased to 0.2. Therefore, by using the Equation. 

6.10, the Landsat based NDVI difference values from -0.3 to 0.083 (γσ) were selected 

for foliar dust appraisal. The Hyperion image, by using Equation. 6.10, the NDVI 

difference values from -0.2 to 0.076 (γσ) were selected for foliar dust appraisal. The 

Landsat and Hyperion based dust distribution maps were prepared by NDVIdiff image 

(Figure. 6.9 (a & b)).  
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Figure 6.9: (a & b)  Foliar dust mapped by Landsat (a) and Hyperion (b) data based 

on VIs difference dust model 

The Hyperion based accuracy of the dust map was higher (RMSE = 0.06 g/m2 and R = 

0.90) than measured with Landsat data (RMSE = 0.11 g/m2 and R = 0.81). From 

Google Earth, the information of roads, mining site, dumps and tailing ponds were 

extracted and it was found that the dusty areas were situated on both sides of the 

existing mining road as well as around the mining sites, tailing pond and dumps areas 

(Figure. 6.10). 
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Figure 6.10: Magnified view of mines and buffer areas showing foliar dust mapped 

by Hyperion data  

6.4.8 Relationship between distances and dust classes 

The average distance of dusty area from two iron ore mines were calculated for 

different Hyperion based dust class (Table 6.7). A correlation study (R2=0.79) 

between the average distance from mines and Hyperion based dust classification result 

which was calculated by the average distance for each dust classes pixels in dust 

contaminated areas. Results concurred with field survey studies shown that there is a 

clear relationship between tree’s distance from mines and different dust contaminated 

areas.  

Table 6.7: Average distance from Kiriburu and Meghataburu mines for different dust 

classes 

Classes Class-1 Class-2 Class-3 Class-

4 

Class-5 Class-

6 

Hyperion foliar dust 

amount (g/m2) 

3-34 34-44 44-54 54-64 64-74 74-80 

Average distance (m) 2193 1689 1567 1340 1116 947 
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from Kiriburu mine 

Average distance (m) 

from Meghataburu mine 

1439 1249 1057 910 733 639 

6.4.9 Accuracy assessment 

For RMS error calculation, we had used the dust value of 20 field samples. The 

Hyperion and Landsat images based correlation coefficient (R) and RMS error results 

were shown in Table 6.8 along with the scatter plot (Figure.6.11). In aforesaid table, 

we found that the Hyperion image estimated dust values from NDVIdiff had the lowest 

RMS error (RMS error=0.06) and highest correlation coefficient (R=0.90) than the 

other VIs. Therefore, for dust estimation, Hyperion based NDVI was selected as an 

optimal VI. 

Table 6.8: Accuracy of foliar dust estimation based on VIs difference (n=20) 

 

 Landsat Hyperion 

VI RMSE R RMSE R 

MSR 0.79 0.72 0.71 0.82 

NDVI 0.11 0.81 0.06 0.90 

NLI 0.21 0.57 0.16 0.60 

PVI 0.25 0.38 0.20 0.43 

SAVI 0.31 0.51 0.23 0.59 

SR 0.63 0.68 0.44 0.62 

TCgreenness 0.26 0.24 0.19 0.38 

TSAVI 0.28 0.56 0.21 0.69 
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Figure 6.11: (a &b) Landsat (a) and Hyperion (b) based estimated foliar dust values 

of the 20 sampling plots against their measured dust values 

6.4.10 Discussion 

For the detection of healthy and defoliated areas, we used narrow banded VIs based 

separability (S) choice test. MNDVI705 correlated well with waned chlorophyll 

content so that this index could be used for healthy and defoliated vegetation type 

(Kumar et al., 2015). The MNDVI705, MSI, NDNI, and CRI1 performance are 

excellent because of the increased anthocyanin pigment levels. MNDVI705 and MSI 

offer the best separability result than the well-established NDNI and CRI1 vegetation 

indices. The MNDVI705 and MSI phenology growth rate is high, so it is good to 

perform this for the detection of defoliation (Tuominen et al., 2009; Solberg et al., 

2004). By combinations of VIs result, the forest health was classified as healthy and 

dust affected pixels class. The vegetation indices combinations (MNDVI705, MSI, 

NDNI, and CRI1) had shown better results for healthy and dust affected pixels, and 

other VIs combinations had not shown good results for healthy and dust affected 

pixels (Tuominen, et al., 2008). Some earlier studies had shown the capability of 

getting better vegetation indices (VIs) through Hyperspectral and multispectral remote 

sensing (Tuominen et al., 2008 & 2009). They also propounded that separability value 

for NDVI (broadband) shows better results than MNDVI705 (narrowband); VIs 
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combination for vegetation indices for NDVI & RENDVI shows the better result for 

healthy and dust affected pixel.  

Based on the above result, we could determine that the Hyperion based NDVI has 

more capability to estimate foliar dust in the mining area than any other VIs. In the 

study area, Sal leaves were selected as it was in abundance, for measurement of dust 

samples spectra in the lab that was in favor of NDVI. Therefore SAVI, TSAVI, NLI, 

MSR, PVI were not favoured, because various vegetation types and coverage lying 

from medium to high couldn’t perform good tree canopy spectra (Veraverbeke et al., 

2012; Jordan 1969). The statistical analysis with NDVI had given better results than 

other VIs. So we had used the NDVI for the study of foliar dust estimation model.  

 The Landsat OLI sensor is unlike the Landsat TM sensor because their bandwidths 

and light conditions are different. Therefore, cross-image calibration was necessary 

for estimating vegetation changes using VI differencing approach. The result educed 

from cross-image NDVI difference was 0.0328 for our study area, which was close to 

the result obtained by Gong et al., 2003) and Lenney et al., (1996). i.e., 0.0165 and 

0.019, respectively, they had linked Landsat ETM+ with Landsat TM /OLI in their 

work.  

However, in the case of hyperspectral data, both the images (2005 and 2016) are of the 

same sensor so that it might be the advantage for the Hyperion data for high accuracy 

than the Landsat data. Moreover, yearly climatic factors like temperature and 

precipitation may affect the NDVI (Wu and Wang, 2016; Wua & Yuan, 2011). The 

temperature of an area might be more reasonable to affect NDVI in the study area. 

Fortunately, the temperature and precipitation of both the year, i.e., 2005 and 2016, 

were almost the same and standard respectively.  

Thus, in this study, the NDVI dissimilation instigated by climatic issues could be 

overlooked. However, in the case of NDVI difference in vegetation cover of the 

unchanged areas during the 11 years, the minor value (0.013) of the VIcross could be 

normalized and recompense the effect of the variation on the NDVI difference (Broich 

et al.,2011; Yan et al., 2015). Moreover, during the data collection, weather conditions 

must be considered because, in rainy weather, rainwater may wash away the dust on 

leaves. Therefore, while collecting field spectra and foliar dust data, rainy days should 

be avoided to confirm the validity of the data. 
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In the study area, the dust estimation was a significant problem because of the 

frequently iron ore transportation via mining haul road on a dump truck. The annual 

production of fine iron ore in these two mining zones are four million tons and around 

a thousand tons of fines per day. The mine materials get transported in nearly a 

thousand truck trips (Prasad et al., 2017). The day to day dust emission generated from 

transportation is so intensive that both sides of the road are filled with the dust, 

vitiating the plants and trees' health.  

In this work, the RMS error of foliar dust appraisal was 0.11 g/m2 of Landsat and 0.06 

of Hyperion, which clearly shows that the dust map by Hyperion image is better than 

the Landsat image. The reasons behind the error in dust estimation may be because of 

various reasons. At first, the relationship between the dust and the NDVI difference 

was exhibited in a lab test. We had tested dust affected leaves spectra in the darkroom, 

but some noisy spectral data had come. Though, the leaf turning was more 0°, which 

might be contributing to dust estimation error. Secondly, in the spatial resolution of 30 

× 30 meter pixel area, there might exist road surfaces with dust along the sides which 

were covered with the dense forest of Sal or teak tree or different vegetation. Those 

pixels are known as mixed pixel because it includes different components within one 

pixel (Lee et al., 1980). Thus, the estimation of the dust amount from the pure pixel 

will be different from the mixed pixel. 

6.5 Summary  

Due to several factors, the plants of the study area are affected by iron ore dust. So for 

monitoring the dust on plants or in the forest, we measured the foliar dust with the 

help of satellite imagery and field based dust measurement. We also compared the 

outcome of Hyperspectral and Multispectral data to find the reliability of the NDVI 

based dust model. Moreover, this methodology could be employed in other mining-

affected regions, considering the dust sample variance. 
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