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5.1 Overview 

The tree species and its diversity are two critical components to be monitored for 

sustainable management of forest as well as biodiversity conservation. Saranda forest is 

covered with different kinds of valuable trees (Sal and teak) and is rich in iron (Kiriburu, 

Meghahatuburu, Gua, and Chiria) depositions. This area covered with forest near the 

mining fields (buffer zone) is exhibiting high-stress conditions as described by dying and 

dry plant material, consequently affecting tree species and its diversity. Therefore, it is 

essential that the impact of mining on tree species and species diversity are adequately 

evaluated. This chapter emphasizes the description of mining activities in hilltop mining 

areas on tree species and its diversity using hyperspectral imagery and field survey data. 

5.2 Data acquisition and pre-processing  

5.2.1 Data used 

The Hyperion (Hyperspectral) and Landsat-8 OLI (Multispectral) sensors satellite data 

were used for tree species identification and diversity mapping. Two satellite data sets, 

dated 16 Dec 2016 (Hyperion), and 9 Dec 2016 (Landsat OLI) were obtained from USGS 

(United States geological survey). Hyperion data were available only for the above-

mentioned period that is why we have used Landsat OLI of that period. Hyperion sensor 

captures very narrow banded data (Hyperion tutorial handbook). Field-based tree species 

spectral data were acquired by the spectroradiometer instrument in the study area for 

marching with satellite imagery spectra. The species phytosociological observation data 

were collected from the Chaibasa forest office, Saranda forest, for tree species 

identification. For species biodiversity analysis (Shannon Index based), 18 plot data were 

collected from the study area. GPS (Global positioning system) has recorded the tree 

species and its diversity locations (latitude and longitude) of the study area. . The masked 

forest pixels and sample location were also shown on the map in Figure. 5.1. The 

secondary data were (base map, toposheet, mining plan, and forest survey data) obtained 

from different concerned state government offices.  
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Figure 5.1: (a)Masking image used to eliminate  forest  pixels (left) , (b) Ground 

truth map indicating collected field tree species and biodiversity samples (Right) 

5.2.2 Identification of forest cover pixels 

Decision Tree (DT) algorithm was used for forest pixels identification. DT is a machine 

learning algorithm and a nonparametric classifier. Pal and Mather (2001) had used DT for 

mangrove species identification and classification. Five narrow-banded vegetation indices 

(MNDVI, MSI, NDNI, ARVI, and ARI1) were used as input of the Decision Tree (DT) 

classifier (Table.5.1).  

Table 5.1: Narrow bands vegetation indices used for forest pixels identification 

 
Narrow 

banded 

VIs 

Index Algorithms 

 

Applications Referen

ces 

Greenness  

 

Modified Red Edge 

Normalized Difference 

Vegetation Index 

(MNDVI705) 

( )( )
750 705

750 705 2*445

nm nm
MRENDVI

nm nm nm

 
 

=   + 

 

 

Precision agriculture, 

forest monitoring and 

vegetation stress 

detection 

Sims & 

Gamon,

2002 

Canopy 

water 

content 

Moisture Stress Index 

(MSI) 

1599

819
MSI



=

 
Canopy stress analysis, 

Productivity and 

modeling fire hazard 

Ceccato   

et 

al.2001 
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condition analysis. 

Light use 

efficiency 

 

Normalized 

Differences Nitrogen 

Index  (NDNI) 

( ) ( ) ( ) ( )  log1 1510nm   log1 1680nm /  log1 1510nm   log1 1680nmNDNI = − +

 

Estimate the amount of 

lignin in vegetation 
Serrano 

et 

al.,2002 

Greenness  

 

Atmospherically 

Resistant Vegetation 

Index (ARVI) 

( ) ( ) ( ) ( )( )ARVI  NIR   2RED  BLUE  / NIR   2RED  BLUE= − − + −

 

Sensitive to changes in 

chlorophyll 

concentration 

Curran., 
et al 

.1995 
Leaf 

Pigment 

 

Anthocyanin 

Reflectance Index 1 

(ARI1) 

( ) ( )ARI1  1/550nm   1/700nm= −

 

Sensitive to anthocyanin 

amount in vegetation 

Gitelson 

et 

al.,2001 

DT derived threshold value was used for masking of forest pixels. The DT based 

identified forest pixels were justified by Google earth image (Geo-eye) and field survey 

data. 

5.2.3 Local tree species of study area 

Saranda forest comprises two main varieties of the forest, i.e., tropical moist deciduous 

and tropical dry deciduous and is also famous for the largest Sal forest of Asia. Teak and 

Sal trees are richly found in this region. Mostly the forest is covered by deciduous trees, 

and the most important species are Teak, Sal, Mangoes, Jamun, Piar, Akasmani, kusum, 

Mahua, Tilia, and Jackfruit, etc. The tree species attributes found in the study area shown 

in Table 5.2.  

Table 5.2: Attributes of tree species at study area 

 

S. No Botanical 

Name 

Common/Local Names FSI Species 

Code 

1 Shorea 

robusta 

Sal 1096 

2 Tectona 

grandis 

Sagwan, Teak 1164 

3 Syzygium 

cumini 

Jamun, Jamoon, Piaman, Rajamun 1136 

4 Madhuca 

latifolia 

Mohwa, Lappa, Mahudo 759 

5 Grewia 

tiliaefolia 

Dhaman, Tada, Thadachiee, Chadichi 552 

6 Gmelina 

arborea 

Siwana, Gumari, Sivan, Gambhar 539 

7 Ficus 

racemosa 

Atti, Rumdi, Atthi 485 

8 Ficus 

benghalensis 

Figs, Wad or bat 477 
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9 Emblica 

officinalis 

Amla, Aonla, Amlaki, Nellimara 410 

10 Careya 

arborea 

Kumbhi 215 

11 Butea 

monosperma 

Palas, Kakhar, Khakhara, Palasin 173 

12 Albizzia 

odoratissima 

Siris, Pullivage, Nellivega, Hiharu 56 

13 Aegle 

marmelos 

Bel, Billi, Bil, Belpatra 37 

14 Acacia 

auriculiformis 

Akasmani, Sona jhuri 6 

5.2.4 Field survey and analysis 

The leaf reflectance spectra of tree species were recorded by field-based 

spectroradiometer during the time of field survey. A total of twenty spectra corresponding 

to six different tree species were recorded, and the mean spectra of each tree species were 

used for analysis and classification. GPS has measured the longitude and latitude for each 

sample of tree species (SF.1). We have measured in 10×10 m2 plots in the field for 

Shannon Index analysis. A total of 18 plots were recorded during the field survey. The 

GPS position was acquired for the center of each diversity plot with the help of high-

precision hand GPS. The species abundance cover, height, and habitat information were 

also acquired during field survey. The field survey photograph of tree species and its 

diversity are shown in Figure 5.2. 

 

 Figure 5.2:  Spectro-radiometery field survey and  laboratory analysis  
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5.2.5 Acquisition and pre-processing of field spectra 

The spectroradiometer recorded the tree reflection spectra and their wavelength. This 

instrument recorded at spectral resolutions of VNIR (300 -1000nm) for 1.4 nm, NIR 

(1000-1700nm) for 2 nm, and SWIR (1700-2500nm) for 4 nm interval respectively. The 

different spectral wave ranges were resampled by the FWHM (Full width at half 

maximum) algorithm (Kayet et al., 2019). The spectra for different tree species were 

collected with the help of fiber optic source (300 to 2500nm) and 180o FOV (Field of 

view). For the measurement of white reference spectra, a standard reference panel (white) 

was used. Species leaf reflectance was measured with the help of a reflectance probe. The 

holder block of the reflectance probe was kept at sample distance 0-3/4″ and 90-degree 

angle was set. The raw field spectra of the study area were recorded by a 

spectroradiometer. 

Pre-processing of spectra consisted of temperature drift correction, water absorption, 

noise bands removal, and spectral smoothing. The temperature drift errors were coming 

from 1001 & 1831 nm wavelength due to sensor detector changing (Lenhard et al., 2005). 

We have used a splice correction algorithm for temperature drift correction. The collected 

spectra had shown error of water vapor and noise (2350 to 2500, 1790 to 1960, and 1350 

to 1460 nm wavelength) due to atmospheric components and instruments' self-generation 

(Staenz et al., 2002). We have just removed two types of spectral errors from wavelength 

bands. Some researchers have used linear and non-linear smoothing filter for spectral data 

smoothing. Savitzky-Golay algorithm based filter smoothing yields high accuracy 

(Savitzky & Golay 1964; Vaiphasa, 2006). So, we have used the Savitzky-Golay filter for 

spectral data smoothing. The average spectra of tree species were calculated after spectral 

smoothing. This spectral has been used for spectral library development and applied for 

classification.   

5.2.6 Pre-processing of satellite data  

Pre-processing correction (geometric, radiometric, and terrain) of Hyperion and Landsat 

8-OLI data were done by image processing software. The Atmospheric correction was 

carried out by the FLAASH (Fast line-of-sight atmospheric analysis of the hypercubes) 

model in image processing software. The location of the study area in the hilly region 

induces a shadow effect on the satellite imagery. We have used a band ratio algorithm for 

shadow effect removal from satellite images. The projection of two images at WGS 
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(World geodetic system) 84 & zone 450 north, on UTM (Universal transverse mercator 

coordinate system) projection system were performed. 

5.3 Methodology  

5.3.1 Tree species discriminant analysis 

For the band's selection, we have used Hyperion wavebands obtained from the 

discriminant analysis. This analysis found a set of prediction equations based on 

independent variables that have been used to classify individuals into groups (Somers et 

al., 2014). The discriminant analysis records the lowest Wilks lambda (L) values. The 

value of L lies between 0 to 1, with the value 1 or close to 1 indicates that the mean of the 

group is not different. Value of 0 or close to 0 indicates that the mean of the group is 

different.  Green and Caroll developed the L statistic in 1978 (Equation.5.1). 

 |S |
effect

|S |S |
effect| error

L =
+

 
        (Eq-5.1) 

Where, Seffect denotes a sum of squares matrix, and Serror denotes cross-products matrix. 

The classification of species was performed using selected spectral bands obtained from 

Wilk’s lambda test.  

5.3.2 Spectral separability analysis of tree species 

For spectral characteristics of tree species, six different wavelength locations were 

selected for species spectral separability analysis. Jeffries-Matusita distance method is a 

method that was selected to estimate the spectral range for different species (Murakami et 

al., 2001). The value obtained from J-M method varies between 0 to √2. The value lying 

close to 0 indicates identical distribution whereas value close to √2 indicates dissimilar 

distribution. The equation.5.2 calculates the J-M distance method.  

2(1 )dJ M eab
−− = −

 

1
1

| |
1 1 2

( ) ( )
8 22 | | |

a bT
a b

a b a b
a b

C C
c c

d In
C C

   

−
  

+   +   = − − + 
    
   

 

(Eq- 5.2) 
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Where, &a b  are two target spectral signatures under comparison,   represents the average 

vector of spectral signature, C represents the covariance matrix of spectral signature, T 

represents the transposition role and |C| is the determinant of C (Richards and Xiuping, 

2005). The selected end-members spectral wavebands of two datasets (Hyperion and 

Landsat OLI) were processed with J-M distance method for calculation of spectral 

seperability.  

5.3.3 Data dimensionality and spectral similarity analysis 

Atmospherically corrected Hyperion data were used in MNF (Minimum noise fraction) 

transformation for data dimensionality. MNF rotation transforms to determine the 

inherent dimensionality of image data, to segregate noise in the data, and to reduce the 

computational requirements for subsequent processing (Boardman and Kruse, 1994). We 

have analyzed noisy data in the MNF tool of image processing software, and outcome 

bands were used for the classification of tree species.  The spectral analysis is based on 

spectral matching or similarity techniques.  The satellite imagery-based derived end-

member spectra were compared with field mean spectra using spectral similarity 

algorithms (Somers and Asner 2014). We have used SFF (Spectral feature fitting) 

algorithm for spectral similarity analysis. A high spectral similarity score denotes the 

closest match and exhibits maximum value. 

5.3.4 Tree species classification and accuracy assessment 

The tree species located in Saranda forest are homogeneous, so we have used the full 

pixel supervised classification methods. Some researchers have used supervised 

classification algorithms (SAM and MD) for full pixels classification based on trained 

data (Petropoulos et al., 2012; Richards and Jia, 2006). In the present study, supervised 

classification (SAM, SVM, and MD) algorithms have been used for full pixels 

classification for Landsat OLI, and Hyperion data based on training tree spectral data. The 

species classification accuracy matrixes were generated on the basis of ground locations 

spectra data. Equation.5.3 computes the accuracy of kappa statistic (K). 

1 1

2

1

r r

N X x x
ii i

i
i iK

r

N x x
i

i
i

 
−   + +

 
− −=

 
−   + +

 
−

 

             

   (Eq-5.3) 
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Where r denotes the number of rows, xii denotes the number of observation in the ith 

column and row. N indicates the total observations. The xi+ and x+i indicates the total 

number of observation in the ith row and column. A comparison was drawn between these 

algorithms on classified images based on accuracy assessment for the selection of the best 

classification algorithm. 

5.3.5 Species diversity estimation based on narrow banded VIs 

Species diversity basically means the occurrence of different species of trees represented 

in a given community (Wang et al., 2003). Some researchers have used hyperspectral 

narrow banded VIs correlated with field measured Shannon Index (H) values for plant 

diversity mapping at the regional scale level (Peng et al., 2018; Dudley et al., 2015; 

Mapfumo et al., 2016). The H-index is a statistical method that classifies the species 

diversity by assuming that the sample represents all species (Peng et al., 2018).  H-index 

is calculated by following Equation-5.4.  

s
H p Inp

i i
i 1

= − 
=

                             
(Eq. 5.4) 

Where p represents the ratio (n/N), ‘n’ is the number of individual species and total 

number of different species is ‘N’.  The ln is the natural log, Σ is the sum of the 

calculations, and s denotes the different types of species.  We have used 13 hyperspectral 

VIs (Table 5.3) extracted from Hyperion data correlated with Shannon Index (H) values 

for the estimation of tree species diversity in the study area. The best correlated (higher 
2

R  

and lower RMSE) vegetation index was selected for this estimation. 

Table 5.3: Estimation of species diversity based on Narrow banded VIs  
 

VIs 

 

Narrow bands Algorithms 

 

 

Applications 

References 

 

Difference vegetation 

index (DVI) 

 

 

782 675
−NIR R   

This index distinguishes between soil and 

vegetation, but it does not account for the 

difference between reflectance and radiance 

caused by atmospheric effects or shadows. 

Tucker et 

al., 1969 

NDVI 

(Normalized 

Difference Vegetation 

Index) 

 

864 660

864 660

NIR R

NIR R

 

 

−

+
 

This index is used because it has the ability to 

reduce many forms of multiplicative noise 

like sun illumination difference, cloud 

shadows, some atmospheric attenuation, 

some topographic variations that are present 

in multi-date imagery. 

Baret, & 

Guyot ,1991 

RVI  

(Ratio Vegetation 

Index) 

 
675

782

R

R



  

This index is sensitive to photosynthetic rates 

in forest canopies, as green and red 

reflectance are strongly influenced by 

changes in leaf pigments. 

Sripada et 

al.,2006 
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SAVI 

(Soil Adjusted 

Vegetation Index) 

( )(1 )864 660

( )864 660

NIR R L

NIR R L

 

 

− +

+ +
 

L=0.5 in this study 

This index is widely used for minimizing the 

influence of soil brightness. It can be used to 

describe the dynamic soil-vegetation systems 

from satellite imagery. 

Huete,et al, 

1988 

MSAVI (Modified 

Soil Adjusted 

Vegetation Index) 

 

 
2 1/22* 1 (2* 1) 8*( )800 800 800 670+ − + − −R R R R

 

This index is a simpler version of the MSAVI 

index. It reduces soil noise and increases the 

dynamic range of the vegetation signal. 

MSAVI2 is based on an inductive method 

that does not use a constant L value (as with 

SAVI) to highlight healthy vegetation. 

Qi et al. 

1994 

TSAVI 

( Transformed Soil 

Adjusted Vegetation 

Index) 

( )864 660
2(1 )864 660

a NIR a R b

a NIR R ab X a

 

 

− −

+ − + +
 

a=slope of the soil line, 1.2 

in this study 

b=soil line intercept, 0.06 in 

this study 

X=adjustment factor to 

minimize soil noise, 

0.08 in this study 

It is almost similar to SAVI to reduce the soil 

background effect, but it uses the parameter 

of the soil line. It is a modified form of SAVI 

to compensate for soil variability due to 

changes in solar elevation and canopy 

structure. 

Baret and 

Guyot, 1991 

NDVI705 

(Red Edge 

Normalized 

Difference Vegetation 

Index)  

 

( 750 705)/( 750 705)− +     

The NDVI705 capitalizes on the sensitivity of 

the vegetation red edge to small changes in 

canopy foliage content, gap fraction, and 

senescence. Applications include precision 

agriculture, forest monitoring, and vegetation 

stress detection 

Gitelson and 

Merzlyak 

1994 

PVI 

( Perpendicular 

Vegetation Index) 

1
( )864 660

21

NIR a R b

a

 − −

+
 

a=slope of the soil line, 1.2 

in this study, 

b=soil line intercept, 0.06 in 

this study 

It is used to eliminate the difference in soil 

background and is most effective under 

conditions of low LAI, applicable for arid and 

semiarid regions. 

Huete,et al, 

1988 

mNDVI705  

(Modified Red Edge 

Normalized 

Difference Vegetation 

Index) 

 

( 750 705)/( 750 705 ( 2* 445))− + −    
 

It differs from the NDVI705 by incorporating 

a correction for leaf specular reflection. The 

mNDVI705 capitalizes on sensitivity of the 

vegetation red edge to small changes in 

canopy foliage content, gap fraction, and 

senescence. Applications include precision 

agriculture, forest monitoring, and vegetation 

stress detection. 

Datt 1999 

NLI( Non-Linear 

Index) 

2( )864 660
2( )864 660

NIR R

NIR R

 

 

−

+

 It is used for removing leaf angle distribution 

influence and view azimuth effect 

Goel and 

Qin, 1994 

mSR705( 

Modified Red Edge 

Simple Ratio Index) 

 

( 750 445)/( 750 445)− −   
 It differs from the standard SR because it uses 

bands in the red edge and incorporates a 

correction for leaf specular reflection. 

Applications include precision agriculture, 

forest monitoring, and stressed vegetation 

detection. 

Kycko et 

al.,2017 

VOG1 

(Vogelmann Red 

Edge Index 1) 

 

734 747

715 726

−

+

 

   This index is a narrowband reflectance 

measurement that is sensitive to the combined 

effects of foliage chlorophyll concentration, 

canopy leaf area, and water content. 

Applications include vegetation phenology 

(growth) studies, precision agriculture, and 

vegetation productivity modeling. 

Vogelmann 

et al., 1993 

5.3.6 Relationship between species diversity, distance from mines, and 

concentration of foliar dust  

Saranda forest has some of the largest iron ore deposits of India. Mining activities are 

causing damage to tree species as well as its diversity. In this study, we have shown the 

relationship between species diversity and distance from mines with leaf dust 
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concentration. We have calculated distance from two mines (Kiriburu and Meghataburu) 

based on field survey points location using GPS measurement tool. PCE instrument was 

used for the collection of leaf dust at field location points (Kayet et al., 2019). We have 

then correlated three parameters (outcome species diversity values, distance from mines, 

and concentration of leaf dust values) for their relationship. The overall research flow 

chart has been shown in Figure 5.3. 

 

Figure.5.3: Research flowchart of tree species classification and its diversity estimation. 

5.4 Results and Discussion 

5.4.1 Tree species discrimination   

The tree species discrimination result is displayed in Table 5.4. The value of Wilks’ 

lambda ranged between 0 to 0.0099. The smaller value indicates that the group's mean of 

the wavelength bands are different and have high separability between different tree 

species. From this analysis,  21 optimal wavebands were obtained. From 21 bands, 07 

bands fall in the VIR region, 08 bands in the NIR region, and 06 bands in the SWIR 

region. These wavebands were used for tree species analysis and its classification. 
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Table 5.4:   Wilk’s lambda values for 21 optimal selected wavebands 

Wavelength (nm) Wilk’s

lambda

1326.05 0.099

599.79 1326.053 0.013

599.79 1326.053 1749.791 0.004

599.79 993.1709 1326.053 1749.791 0.002

599.79 993.1709 1326.053 1336.15 1749.791 0.001

599.79 993.1709 1326.053 1336.15 1749.791 2304.713 0

599.79 660.848 993.1709 1326.053 1336.15 1749.791 2304.713 0

599.79 660.848 993.1709 1326.053 1336.15 1749.791 1780.087 2304.713 0

599.79 660.848 993.1709 1023.398 1326.053 1336.15 1749.791 1780.087 2304.713 0

599.79 660.848 993.1709 1023.398 1326.053 1336.15 1749.791 1780.087 1981.86 2304.713 0

599.79 660.848 993.1709 1023.398 1134.38 1326.053 1336.15 1749.791 1780.087 1981.86 2304.713 0

559.09 599.7959 660.848 993.1709 1023.398 1134.38 1326.053 1336.15 1749.791 1780.087 1981.86 2304.713 0

559.09 599.7959 660.848 993.1709 1023.398 1134.38 1326.053 1336.15 1477.431 1749.791 1780.087 1981.86 2304.713 0

559.0944 599.7959 660.848 993.1709 1023.398 1134.38 1326.053 1336.15 1477.431 1679.204 1749.791 1780.087 1981.86 2304.713 0

559.0944 599.7959 660.848 993.1709 1023.398 1124.283 1134.38 1326.053 1336.15 1477.431 1679.204 1749.791 1780.087 1981.86 2304.713 0

559.0944 589.6205 599.7959 660.848 993.1709 1023.398 1124.283 1134.38 1326.053 1336.15 1477.431 1679.204 1749.791 1780.087 1981.86 2304.713 0

559.0944 589.6205 599.7959 660.848 721.8994 993.1709 1023.398 1124.283 1134.38 1326.053 1336.15 1477.431 1679.204 1749.791 1780.087 1981.86 2304.713 0

518.3937 559.0944 589.6205 599.7959 660.848 721.8994 993.1709 1023.398 1124.283 1134.38 1326.053 1336.15 1477.431 1679.204 1749.791 1780.087 1981.86 2304.713 0

518.3937 559.0944 589.6205 599.7959 660.848 721.8994 993.1709 1023.398 1124.283 1134.38 1326.053 1336.15 1477.431 1679.204 1739.695 1749.791 1780.087 1981.86 2304.713 0

518.3937 559.0944 579.4455 589.6205 599.7959 660.848 721.8994 993.1709 1023.398 1124.283 1134.38 1326.053 1336.15 1477.431 1679.204 1739.695 1749.791 1780.087 1981.86 2304.713 0

518.3937 559.0944 579.4455 589.6205 599.7959 660.848 721.8994 993.1709 1023.398 1124.283 1134.38 1275.661 1326.053 1336.15 1477.431 1679.204 1739.695 1749.791 1780.087 1981.86 2304.713 0

Bold values indicated that sleeted wavelength  (nm) for forest health 
 

5.4.2 Spectral separability of tree species 

The J-M distance method based spectral separability values were derived from Hyperion 

and Landsat 8-OLI satellite imagery (Table 5.5). The values thus obtained by J-M-

distance method from Hyperion data ranged between 1.25 to 1.87, which indicates that it 

has high spectral separability between tree species. The value ranged between 1.107 to 

1.392 indicates that it has moderate to low spectral separability between tree species. The 

spectral separability value of different tree species derived from Hyperion data is higher 

than Landsat 8 OLI data. 

Table 5.5: JM distance values for Hyperion (a) & Landsat (b) images based on 

training sample values 

 

(a)Hyperion Sal Teak Akasmani Mohwa Palash Bot 

Sal - 1.77 1.14 1.79 1.69 1.71 

Teak 1.77 - 1.70 1.87 1.72 1.80 

Akasmani 1.14 1.70 - 1.71 1.48 1.46 

Mohwa 1.79 1.87 1.71 - 1.25 1.70 

Palash 1.69 1.72 1.48 1.25 - 1.38 

Bot 1.71 1.80 1.46 1.70 1.38 - 

(b) Landsat Sal Teak Akasmani Mohwa Palash Bot 

Sal - 1.34 1.10 1.37 1.39 1.33 

Teak 1.34 - 1.24 1.32 1.37 1.31 

Akasmani 1.10 1.24 - 1.33 1.39 1.32 

Mohwa 1.37 1.32 1.33 - 1.29 1.37 

Palash 1.39 1.37 1.39 1.29 - 1.31 

Bot 1.33 1.31 1.32 1.37 1.31 - 

5.4.3 Data dimensionality and similarity 

After performing data dimensionality, the eigen values lay between 103.88 to 1.07 

(Appendix.2). The first 34 MNF bands had shown good result and exhibited better 
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spectral information. These bands were used for tree species classification. The spectral 

similarity result (field spectra vs. Hyperion image spectra) is shown in Table 5.6. 

Table 5.6: Spectral similarity values between Hyperion image and ground reflectance 

spectra 
 

S. No Species Botanical 

Name 

Common/Local Names SAM Score 

1 Shorea robusta) Sal 0.81 

2 Tectona grandis Teak 0.78 

3 Acacia auriculiformis Akasmani 0.71 

4 Ficus benghalensis Bot or wad 0.68 

5 Madhuca latifolia Mohwa 0.63 

6 Butea monosperma Palash 0.69 

 The similarity scores indicated that spectral similarity ranged between high to medium.  

The spectral similarity score for Sal and Teak trees were found highest than the other 

trees. Sal and Teak trees covers around 65% of the study area (FSI report, 2015). The 

spectral variations of different tree species in the study area are shown in Figure.5.4. 

 

Figure 5.4: Visual comparison of  resampled field average reflectance spectra for 

different tree species at the study area 
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5.4.4 Tree species classification and accuracy assessment 

We have classified tree species of the study area into six different categories based on 

SVM, SAM, and MD algorithms using Hyperion and Landsat 8 OLI. The enlarged view 

of the mines and its surrounding region classified by the SVM algorithm on Hyperion 

data is shown in Figure. 5.5.  

 

Figure 5.5. Spatial distribution of tree species mapped by SVM algorithm. based on 

Hyperion data 

Sal and Teak trees covered most of the area. These trees were located at higher altitudes 

(700 to 900 meters) on the hilly side of the study region. Other trees are dominant at 

lower altitude (300 to 400 meter), northeast, and southeast parts of the study region. 

Classification accuracy estimation based on ground species spectra data shown that 

Hyperion image- based SVM algorithm provided better accuracy results (overall 
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accuracy= 85.16, kappa=0.78), than SAM algorithm (overall accuracy=7828, kappa=0.76) 

and MD algorithm (overall accuracy=75.58, kappa=0.73). Also, Landsat 8OLI image-

based species classifications carried out by SVM algorithm; show an overall accuracy of 

68.71% and a Kappa statistic of 0.66. The accuracy comparison (Hyperion based SVM, 

SAM, MD and Landsat 8 OLI based SVM) matrix is shown in Table 5.7.  

Table 5.7:  Accuracy assessment results of (a) SVM on Hyperion (b) MD on 

Hyperion, (c) SAM on Hyperion, and (d) SVM on Landsat 

 
(a) Sal Teak Akasmani Mohwa Palash Bot Total UA 

Sal 11 0 2 0 0 1 14 88.68 

Teak 3 9 0 0 5 0 17 85.53 

Akasmani 0 0 5 5 0 0 10 78.22 

Mohwa 0 0 2 6 0 0 8 83.19 

Palash 0 2 0 0 7 0 9 75.47 

Bot 0 0 0 0 0 11 11 76.18 

Total 14 11 9 11 12 12 69  

PA 89.53 83.76 81.29 82.11 84.23 83.95   

Overall accuracy: 85.16%, kappa statistics: 0.78 

(b) Sal Teak Akasmani Mohwa Palash Bot Total UA 

Sal 10 0 1 0 0 1 12 78.55 

Teak 1 11 0 0 1 1 14 80.78 

Akasmani 0 0 8 2 0 3 13 79.11 

Mohwa 0 0 2 7 0 0 9 65.83 

Palash 0 2 0 0 9 0 11 81.45 

Bot 0 0 0 3 0 8 11 73.27 

Total 11 13 11 12 10 13 70  

PA 87.19 88.53 84.27 83.95 78.76 85.61   

Overall accuracy: 75.58%, kappa statistics: 0.73 

(c) Sal Teak Akasmani Mohwa Palash Bot Total UA 

Sal 11 0 0 0 0 0 11 81.12 

Teak 2 9 0 0 1 0 12 74.73 

Akasmani 0 0 9 0 0 1 10 79.22 

Mohwa 0 1 1 7 0 0 9 83.64 

Palash 0 0 0 0 8 0 8 75.67 

Bot 0 0 0 4 0 10 14 87.48 

Total 13 10 10 11 9 11 64  

PA 87.43 85.92 84.28 76.38 78.84 80.47   

Overall accuracy: 79.55%, kappa statistics: 0.75 

(d) Sal Teak Akasmani Mohwa Palash Bot Total UA 

Sal 12 0 0 0 0 1 13 79.53 

Teak 0 8 0 1 1 0 10 73.48 

Akasmani 0 0 11 1 0 1 13  

Mohwa 1 0 0 6 0 0 7 71.79 

Palash 0 1 0 0 8 0 9 62.73 

Bot 0 0 0 4 1 9 14 78.15 

Total 13 9 11 12 10 11 66  

PA 80.44 75.18 78.59 68.15 74.72 75.27   

 Overall accuracy: 68.71%, kappa statistics: 0.66 
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5.4.5 Species diversity estimation and mapping 

We have correlated 13 VIs with field measured Shannon index values. The regression 

analysis results (SSE,
2

R , Adj. 
2

R , and RMSE) is shown in Table 5.8. The NDVI705 had 

shown best linear fitting (
2

R =0.76, RMSE= 0.04)) with Shannon index values.  

Table 5:8 Relationship between narrow banded VIs & Shannon Index based species 

diversity 

 
Narro

w 

banded 

VIs 

DV

I 
 

NDVI 
 

RVI 
 

mNDVI 

705 

TSAVI NDVI 

705 
 

PVI 
 

SAVI 
 

NLI 
 

mSR 

705 

VOG

1 
 

MS

R 
 

TC 

greenness 

SSE 0.5

6 

0.07 0.08 0.30 0.37 0.35 0.32 0.34 0.39 0.108 0.43 0.13 0.13 

R2 0.4

3 

0.71 0.52 0.47 0.29 0.76 0.31 0.28 0.39 0.43 0.26 0.52 0.37 

Adj R2 0.3
5 

0.68 0.45 0.45 0.25 0.73 0.22 0.19 0.3 0.35 0.17 0.46 0.29 

RMSE 0.1
9 

0.07 0.07 0.14 0.15 0.04 0.14 0.15 0.16 0.08 0.16 0.09 0.09 

SSE= Sum squared error, R2= Coefficient of Determination, RMSE= Root Mean Square Error 

Since, NDVI 705 correlated well with waned chlorophyll content (Kumar et al., 2015), so 

we have used this index for diversity estimation. The linear regression plot between 

narrow banded VIs and species diversity is shown in Figure. 5.6.  

 

Figure 5.6  Regression between Hyperspectral narrow banded VIs and field measured 

Shannon Index of 18 sampling plots 
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Enlarged view of the species diversity map for the mines and its surrounding region is 

shown in Figure. 5.7.  

 

Figure 5.7. Species diversity mapped by Shannon Index based on narrow banded VIs 

The linear regression between fields measured Shannon Index, and Hyperion derived 

Shannon Index gave the 
2

R  value of 0.72 and RMSE value of 0.15 (Figure. 5.8). The 

correlation between Hyperion and field derived Shannon index had shown better 

relationship (
2

R  0.68). 
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Figure 5.8. Regression between Hyperion imagery derived by Shannon index and field 

measured Shannon index 

5.4.6 Relationship between species diversity, distance from mines and foliar 

dust concentration 

For each sample point, values of species diversity, distance from either mines (Kiriburu 

and Meghataburu), and foliar dust concentration are shown in Table 5.9. Those values 

were used for correlations analysis using three different correlation methods (Spearman, 

Pearson, and Kendall). The correlation results thus obtained by the abovementioned 

methods are shown in Table 5.10 (for Meghahatuburu mine) and Kiriburu mine).  

Table.5.9 Distance from Kiriburu and Meghataburu mines of tree species diversity 

with their foliar dust concentration 

 
Sample 

Plots ID 

Species Diversity 

(Shannon Index) 

Foliar Dust 

(gm/m2) 

Kiriburu  Mine from 

Distance (m) 

Meghahatuburu 

Mine from 

Distance(m) 

1 2.38 1.39 3,206 2,364 

2 1.61 2.13 2,858 1,452 

3 2.42 1.15 3,136 3,403 

4 1.92 1.91 4,126 3,369 

5 1.55  1.93 3,915 5,017 

6 1.91 14.05 1,105 964 

7 1.74 2.12 5,192 1,375 

8 2.18 1.43 6,156 3,633 

9 1.83 2.014 4,057 3,418 

10 1.40 13.51 720 1,192 
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11 1.34 16.92 327 1,728 

12 1.80 2.19 2,553 3,542 

13 1.72 3.29 1,971 2,836 

14 1.82 2.37 1,233 2,640 

15 2.81 1.23 2992 4,672 

16 1.93 4.15 1,111 2,463 

17 1.99 4.85 1463 1,886 

18 1.80 3.89 1,467 2,095 

Table 5.10: Spearman, Pearson and Kendall correlation matrix amongst species diversity, 

foliar dust concentration and mines distance to Meghahatuburu and Kiriburu. 

Spearman 

Species Diversity 

(Shannon Index) 

Foliar dust 

(gm/m2) 

Distance(m) from 

Meghahatuburu 

Mine 

Species Diversity (Shannon Index) 1.00 -0.58 0.24 

Foliar dust (gm/m2) -0.58 1.00 -0.67 

Distance(m) to Meghahatuburu Mine 0.24 -0.67 1.00 

Pearson 

 Species Diversity 

(Shannon Index) 

Foliar dust 

(gm/m2) 

Distance(m) to 

Meghahatuburu 

Mine 

Species Diversity (Shannon Index) 1.00 -0.46 0.36 

Foliar dust  (gm/m2) -0.46 1.00 -0.59 

Distance(m) to Meghahatuburu Mine 0.366 -0.59 1.00 

Kendall 

 Species Diversity 

(Shannon Index) 

Foliar dust 

(gm/m2) 

Distance(m) to 

Meghahatuburu 

Mine 

Species Diversity (Shannon Index) 1.00 -0.43 0.15 

Foliar dust  (gm/m2) -0.43 1.00 -0.50 

Distance(m) to Meghahatuburu Mine 0.15 -0.50 1.0000 

Spearman 

Species Diversity 

(Shannon Index) 

Foliar dust 

(gm/m2) 

Distance(m) 

from Kiriburu 

Mine 

Species Diversity (Shannon Index) 1.00 -0.58 0.38 

Foliar dust (gm/m2) -0.58 1.00 -0.83 

Distance(m) from Kiriburu Mine 0.38 -0.83 1.00 

Pearson 

 

Species Diversity 

(Shannon Index) 

Foliar dust 

(gm/m2) 

Kiriburu Mine 

to Distance(m) 

Species Diversity (Shannon Index) 1.00 -0.46 0.35 

Foliar dust  (gm/m2) -0.46 1.00 -0.65 

Distance(m) from Kiriburu Mine 0.35 -0.65 1.00 

Kendall 

 

Species Diversity 

(Shannon Index) 

Foliar dust 

(gm/m2) 

Distance(m) to 

Kiriburu Mine 

Species Diversity (Shannon Index) 1.00 -0.43 0.25 

Foliar dust  (gm/m2) -0.43 1.00 -0.66 

Distance(m) from Kiriburu Mine 0.25 -0.66 1.00 

The correlations results thus obtained show that there exists a good negative correlation 

between foliar dust concentration, species diversity, and the distance from mines 

(Figure.5.9).  
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Figure 5.9. The relation amongst species diversity indices (Shannon Index) , distance 

from mines (Kiruburu and Meghataburu)  and foliar dust concentration  

5.4.7 Discussion 

As per the result obtained in this study, we could infer that, Hyperspectral (Hyperion) data 

has more capability in tree species mapping and diversity assessment when coupled with 

field spectral data, than any other multispectral data (Landsat). Some researchers studied 

on tree species classification and diversity estimation based on hyperspectral and 

multispectral data at a fine-scale level.  Dalponte et al., 2014 had studied on tree crown 

and classification using airborne hyperspectral data in boreal forest area. They had shown 

that hyperspectral data has better accuracy for tree species classification than other 

multispectral data. Shen & Cao, (2017) worked on tree species classification using 

hyperspectral and Lidar data in Subtropical forest area. They had used random forest 

classification algorithm to differentiate five tree species and provided a relatively higher 

accuracy (85.4%). This study has displayed a step-wise discrimination test for the 

identification of wavebands, which is significant for tree species classification. As 

obtained from the tree species discrimination analysis, 21 different spectral wavebands 

were selected for tree species classification, of which six belongs to the visual infrared 

region; eight to the near-infrared, and seven to shortwave infrared region (Table.5.11).  

Table 5.11:   Wilk’s lambda selected wavebands and their significant for tree species 

 
S.L 

No 

Wavelength 

(nm) 

Cause of Absorption Leaf Chemicals Reference 

1 518 Electron Transition Chlorophyll b Curran et al., 1991 

2 559 N-H stretch Nitrogen Curran, 1989 

3 579 Electron Transition Nitrogen Asner,2008 

4 589 Electron transition Protein Curran, 1989 
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5 599 N-H stretch Nitrogen ,Protein Lucas and Curran, 

1999 

6 660 Electron Transition Chlorophyll b Vyas  et al.,2011 

7 721 N-H stretch 1st overtone Protein and Nitrogen Curran, 1989 

8 993 H-bend, 1st overtone Starch Kumar  et al.,2001 

9 1023 C-H stretch Protein ,Water content Thenkabail 2002 

10 1124 H bend, 1st overtone Water content Vyas  et al.,2011 

11 1134 H stretch, C-H deformation Moisture absorption Serrano et al.,2002 

12 1275 H bend, 1st overtone Moisture absorption Serrano et al.,2002 

13 1326 H stretch, C-H deformation Moisture absorption Serrano et al.,2002 

14 1336 N-H Bend, 1st overtone Water Kumar  et al.,2001 

15 1477 H stretch 1st overtone- sugar Lucas and Curran, 

1999 

16 1679 N-H stretch 1st overtone Protein, Nitrogen, Starch Thenkabail et 

al.,2004 

17 1739 C-H stretch Protein Sobhan, 2007 

18 1749 C-H stretch 1st overtone Cellulose, sugar, starch Lucas and 

Curran,1999 

19 1780 C-H stretch starch Sobhan, 2007 

20 1981 N-H  asymmetry Protein Thenkabail et 

al.,2004 

21 2304 N-H Stretch/C-H stretch/C-H  

bend, 2nd overtone 

Protein , Nitrogen Lucas and 

Curran,1999 

Vyas et al. (2011) studied on tree species discrimination analysis, and they found 22 

wavebands, of which seven falls in VIR, eight in NIR, and six bands in the SWIR region. 

Peerbhay et al., (2013) worked on tree species discrimination analysis in Natal, South 

Africa.. They found a total of 27 wavebands (8 –VIR, 12 -NIR, & 7- SWIR) from 

discrimination analysis, and they used those bands for tree species classification. In this 

work, the result obtained from J-M distance method had shown that Hyperion data -based 

species spectral separability value (1.25 to 1.87) was higher than Landsat 8 OLI data (1.10 

to 1.39). Puletti et al., (2016) had applied the J-M method for spectral separability 

analysis of tree species. They found that the spectral separability value-obtained from 

hyperspectral data (1.17- 1.93) was higher than multispectral data (1.20-1.67). Hao et al. 

(2014) had used Landsat data for spectral separability analysis of tree species based on the 

J-M distance method. They found that the spectral separability value lay between 1.27 to 

1.73 for different tree species. Some previous studies have reported that the tree species 

classification performed on hyperspectral data had shown better result than multispectral 

data. This study has shown that tree species classification based on hyperspectral data 

(85.16%) provided better classification accuracy than multispectral data (68.71 %,). Vyas 

et al., (2014) had compared species classification accuracy based on Hyperion (Accuracy 

85.25%) and Landsat ETM data (Accuracy 65.25%) in Western Himalaya region, India. 

Lim et al., (2019) studied on tree species classification using Hyperion and Sentinel-2 
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satellite imagery in South Korea and China and compared the accuracy level also 

(Hyperion- 67% and Sentinel-2 -51%).  In the study, we have used hyperspectral VIs data 

for species diversity estimation based on Shannon Index values. NDVI705 has shown  

best correlated value (
2

R  =0.72) with field-based Shannon Index data as it has good 

sensitivity to chlorophyll content, leaf pigment, canopy structure, and canopy water 

content (Gitelson et al., 2005; Croft et al., 2014). So we have used the NDVI705 index for 

species diversity estimation. Other vegetation indices were not matched perfectly with 

field-based Shannon Index due otlow canopy structure, canopy water content and 

chlorophyll content in the study area (Tuominen et al., 2009; Sims et al., 2002). Some 

researchers had shown that SD and CV NDVI were best correlated with Shannon Index 

values for plant diversity estimation (Peng et al., 2018; Peng et al., 2019). Onyia et al., 

(2018) studied plant diversity in Oil polluted regions usingNDVVI (normalized difference 

vegetation vigour index) on hyperspectral data. They found that NDVVI was best 

correlated with Shannon Index values. In this study, we have correlated Hyperion and 

field derived Shannon Index values for result validation. The correlation results show that 

2
R is 0.72, and RMSE is 0.15. These values are not matched well due to noise content in 

the hyperspectral data, and forest canopy problem in the study area. Jha et al., (2019) had 

performed correlation between AVIRIS -NG (Airborne visible/infrared imaging 

spectrometer -next generation) and field measured Shannon diversity Index values and 

found that 
2

R  was 0.86. Onyia et al., (2019) had correlated two species diversity results 

(Hyperion and Shannon Index diversity) and obtained a R2 value of 0.67.. In this study, 

the correlation between species diversity, foliar dust concentration, and distance from 

mines had shown a strong negative relationship. Kayet et al. (2019) showed a better 

negative relationship between forest health, distance from mines, and foliar dust 

deposition. Tuominen et al. (2009) had shown a clear negative relationship between leaf 

reflectance and trees distance from mines. 

This study involved the tree species classification and diversity estimation. Some errors 

obtained in the study are shown in regression analysis graph. Many reasons are 

contributing to the error in tree species classification and diversity estimation. Hyperion 

data exhibits higher noise ratio and get affected by atmospheric components. It could have 

induced some error to the study results (Shaw et al., 2003). The spatial resolution of the 

Hyperion image is 30m, so the mixed pixel problem arose for species classification and 
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diversity estimation (Lee & Lathrop, 2005).  The spectroradiometer instrument collected 

some self-generated noise during field spectra collection. It may haveeffect on the results 

(Vaiphasa et al., 2006). Due to the location of the study area on the hills, the satellite 

imagery gets infected with shadow error (Adler et al., 2001). Forest canopy can induce the 

problem of image spectral segregation (Ustin et al., 2004). The study area has a canopy 

density cover of about 30 to 40 %.  

5.5 Summary  

The potential utility of hyperspectral data demonstrated the in discriminating the tree 

species and classifying the tree species diversity in hilltop mining areas. The pre-

processing of 242 Hyperion (narrow bands) spectral wavebands resulted into 145 

corrected spectral wavebands. The 21 spectral wavebands were selected through 

discrimination analysis (Wilk’s Lambda test). The SVM, SAM, and MD algorithms were 

applied for tree species classification based on field spectra data. We have identified six 

species (Sal, Teak, Akasmani, Mohwa, Palash, and Bot) in the study area at the spatial 

level. The hyperspectral vegetation indices (VIs) were used to estimate species diversity 

based on field measured Shannon Diversity Index. Regression analysis between Hyperion 

imagery derived from Shannon index and field measured Shannon index have been done 

for validation purposes. As well as show the relationship among species diversity and 

foliar dust concentration as a function of distance from mines. The methodology adopted 

by us can also be applied to other forest areas in the vicinage of the mines, and it could 

serve as the base for future work for forest management and geo-environmental planning. 

 

 

 

 

 

 

 

 

 


	Chapter 5
	5.1 Overview
	5.2 Data acquisition and pre-processing
	5.2.1 Data used
	5.2.2 Identification of forest cover pixels
	5.2.3 Local tree species of study area
	5.2.4 Field survey and analysis
	5.2.5 Acquisition and pre-processing of field spectra
	5.2.6 Pre-processing of satellite data
	5.3 Methodology
	5.3.1 Tree species discriminant analysis
	5.3.2 Spectral separability analysis of tree species
	5.3.3 Data dimensionality and spectral similarity analysis
	5.3.4 Tree species classification and accuracy assessment
	5.3.5 Species diversity estimation based on narrow banded VIs
	5.3.6 Relationship between species diversity, distance from mines, and concentration of foliar dust
	5.4 Results and Discussion
	5.4.1 Tree species discrimination
	5.4.2 Spectral separability of tree species
	5.4.3 Data dimensionality and similarity
	5.4.4 Tree species classification and accuracy assessment
	5.4.5 Species diversity estimation and mapping
	5.4.6 Relationship between species diversity, distance from mines and foliar dust concentration
	5.4.7 Discussion
	5.5 Summary


