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4.1 Overview  

Forest health assessment is a good concept in management of forest and natural resource. 

Mining activities in the iron ore belt of Saranda forest, Karo and Koina river basin which 

is a catchment area for these mines have a very high potential to induce forest health 

problems. Study area in the buffer zone of Kiriburu and Meghahatuburu mining fields are 

under high-stress conditions and are showing signs of dry and dying plant species. 

Growing mining related anthropogenic activities within and near the forest lands are 

causing threat to forest health. So it is essential to monitor forest health in surrounding 

mining sites.   

4.2 Data acquisition and pre-processing  

4.2.1 Data source  

Hyperspectral (Hyperion) and multispectral (Landsat-OLI) data corresponding to the path 

and row number of 140/45 of Saranda forest, dated 16 Dec 2016 and 31 Dec 2016 

respectively, were downloaded from the USGS website were used for this study. Forest 

health leaf spectra data were collected by field spectroradiometer instrument. GPS 

recorded healthy and unhealthy forest locations (latitude and longitude). Foliar dust data 

were collected in the field by PCE Instrument. NASA’s EO-1 Hyperion satellite is 

equipped with Hyperion spectrometer that has the sampling spectral distance of 10nm 

within the 7.7 km swath path, which provides 242 spectral bands within the 350-2500nm 

wavelength of EM spectrum. Hyperion sensors provide images of surface features of the 

earth in hundreds of narrow adjoining spectral bands. Hyperion image was procured in 

georeferenced (1GST), radiometrically corrected (L1R), and terrain corrected (L1T) data 

format. Field Spectroradiometer based spectral data of healthy and unhealthy trees have 

been used for forest health classification and validation of results. GPS based healthy and 

unhealthy trees locations were used for forest health assessment. Field survey data 

obtained from the forest department of health and unhealthy tree locations were also used 

for forest health mapping. Toposheets and Google earth images were used for the 

justification of results. 

4.2.2 Field spectra data collection 

Field-based spectroradiometer recorded the healthy, moderately healthy, and unhealthy 

forest leaf reflectance spectra, and while collecting the reflectance spectra, canopy spectra 

were avoided. This instrument records the leaf reflectance spectra and their wavelength 
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within a range from 350 nm to 2500 nm. The field spectra containing 1024 bands at 1.4 

nm (Visual), 2 nm (NIR), and 4 nm (SWIR) interval were then resampled to process 155 

bands Hyperion data using the FWHM wavelength method. The field spectra were 

collected by SMA905 single fiber optic light guide having the FOV (Field of view) of 

180°. The standard white reference panel had used for the measurement of white 

reference. A reflectance probe was used for measurements of leaf reflectance. The 

reflectance probe holder block was used for the sample distance (0-3/4″) and angle (45, 

90, and 180 degrees) set. The forest pixels were masked, and the location of the sample 

was shown on the map (Figure 4.1).  

 

Figure 4.1: (a)Masking image used to eliminate  forest  pixels (left) , (b) Ground 

truth map indicating of collected filed samples (Right) 

The field spectra for each forest health status were collected and mean spectra were 

used for the forest health assessment. GPS recorded the latitude and longitude of each 

sample location. Sixty sample points of forest health status were recorded by 

spectroradiometer in the field. 
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4.2.3 Lab spectral data collection  

Leaves were collected from different tree species of the study area for lab spectra 

analysis. The leaves were plucked and enveloped in a plastic cover for lab spectra 

measurements that had to be made within 4 hours so as to maintain the leaves' optical 

properties (Vaiphasa et al. 2005). Measurement of leaves spectra of collected leaves; 

we had used a black room to avoid noise from other objects. The spectroradiometer 

and their lab accessories parts (pistol grip, reflectance probe, optic fiber cable, 

standard white reference panel, a halogen lamp, and sample holder) were used for 

laboratory leave spectra analysis. The pistol grip was attached to a fiber optic cable. 

The pistol grip was adjusted at an angle of 90°, and the sample holder was set at a 

distance of 2/3 inches from the leaf. The field of view of optic fiber cable was fixed at 

a 35° angle. The halogen lamp was selected having a wavelength, ranged between 350 

to 2500nm as the energy source to create reflectance. A spectroradiometer recorded a 

total of 30 samples of lab spectra. The field survey and laboratory experiment to 

assess forest health was shown in Figure 4.2. 

4.2.4 Pre-processing of field and lab collected spectra data 

The field and lab collected spectra data were used to build a spectral library 

(Figure.4.3). We have developed a forest health based spectral library that could be 

used for forest health discrimination analysis and classification. The pre-processing of 

 

Figure 4.2: Spectroradiometry field survey (a) and laboratory analysis of collected 

spectra (b)  



 

42 

 

lab and field spectra involved temperature drifts correction, water absorption 

correction, unilluminated wavelength removal, and spectral smoothing. 

 

Figure 4.3: Pre-processing of  raw spectra to build spectral library 

The spectroradiometer is so structured that different inherent variations in detector 

sensitivity are used at different temperature conditions. Temperature drifts errors were 

generated due to multiple detectors used in the spectroradiometer. The spectra of 

different temperature drifts were located at 1001 nm and 1831 nm wavelength 

(Lenhard et al., 2005). The splice correction algorithm was used for spectral 

temperature drifts correction. During field spectra data collection, water-vapor errors 

come from ambient atmospheric components. The regions for water-vapor wavelength 

are generally located between 1350 to1460 nm; 1790 to 1960 nm, and 2350 to 2500 

nm (Staenz et al., 2002). In lab spectra, the unilluminated error was coming from the 

halogen lamp. The regions of unilluminated error are generally located at 350 and 400 

nm wavelength bands (Rogass et al., 2017). We have removed two types of error in 

wavelength bands (water vapor and unilluminated) from field and lab spectra. During 

spectral data collection, some noise was self-generated. Some researcher has used 
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linear and non-linear smoothing filters for spectral data smoothing. Savitzky-Golay 

algorithm based filter smoothing yields high accuracy (Vaiphasa, 2006; Savitzky & 

Golay 1964). So, we had used the Savitzky-Golay filter for spectral data smoothing. 

On spectral smoothing, the average spectra of tree health were calculated. The mean 

spectra (ASCII file format) were imported in spectral library builder options of ENVI. 

Then, we had built a spectral library of forest health with the help of other field 

surveys and secondary data. 

4.2.5 Hyperion and Landsat-OLI data pre-processing 

Hyperion (Hyperspectral) level 1 radiometric product is available in 242 bands. 

Hyperion radiometric image of which many of the bands are not working because of 

non calibrated, overlap region, water vapor absorption, and noise effected (Vyas et al., 

2007). Finally, 155 Hyperion bands were considered for forest health analysis. The 

atmospheric correction has only reduced the effects of the atmospheric components, 

i.e., water vapor, dust, and gasses (George et al., 2014). The atmospheric correction 

was carried out by the FLAASH (Fast line of atmospheric sight analysis of spectral 

hypercube) model. Atmospheric corrected Hyperion data were further processed to 

remove shadow effect using a terrain correction model. Also, the Landsat-OLI 

(multispectral) data subjected to atmospheric correction and clouds and shadows were 

removed through a pre-processing image tool. Both Hyperion and Landsat -OLI data, 

were projected to Universal Transverse Mercator (UTM) coordinate system at WGS 

84 datum, and zone 45° north. Atmospherically corrected data was used to MNF 

(Minimum Noise Fraction) transformation for noise removal. The MNF 

transformation is a linear transformation dataset, which is essentially a two cascaded 

PCA (Principal Components Analysis) transformations (Boardman and Kruse 1994). 

The PPI (Pixel Purity Index) algorithm was used, which is one of the widest end-

member extraction algorithm used for Hyperspectral image analysis. PPI is a means of 

finding the most spectrally pure and extreme pixels in the Hyperspectral images 

(Vaiphasa et al., 2006). Hyperion image was added to the PPI algorithm for 

identifying spectrally pure pixels or end-members for selection of each forest health 

class. The spectral analysis tool was used for calculating the similarities measurement 

into field end-member average spectra, and Hyperion image derived average spectra. 

Two methods were used to measure the spectral similarity, i.e., SAM (Spectral Angle 

Mapper) and SFF (Spectral Feature Fitting).  
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4.3 Methodology  

4.3.1 VIs model for forest health analysis  

The narrow banded VIs (Vegetation Indices) model creates a spatial map that depicts 

the health and vigor of the forested region (Solberg et al., 2004). It well detects the 

healthy and unhealthy conditions of the forest. The VIs model uses four different 

narrow-bands vegetation indices. They are greenness VIs that shows the distribution 

of greenness; leaf pigment VIs which shows the concentration of anthocyanin 

pigments for stress levels; canopy water content VIs that shows the concentration of 

water; light use efficiency VIs that shows forest growth rate of the vegetation. 

In the forest health assessment, vegetation indices are extracted from the Hyperion 

satellite image. Each of the vegetation properties is designed to represent some 

particular vegetation characteristics. Narrow-bands (Hyperspectral) VIs were also 

used for a forest health assessment (Table.4.1). 

Table 4.1: Different narrow banded VIs for forest health assessment 

Narrow 

banded 

VIs 

Indices Algorithm 

 

Applications References 

Greenness 

Index 

 

Modified Red Edge 

Normalized 

Difference 

Vegetation Index 

(MNDVI705)  

( )( )
750 705

750 705 2*445

nm nm
MRENDVI

nm nm nm

 
 

=   +   

Precision 

agriculture, forest 

monitoring and 

vegetation stress 

detection. 

Sims & 

Gamon,2002 

Modified Red Edge 

Simple Ratio 

(MSR700) 

750 445

750 445
MRESNDVI

 

 

−
= +  

Precision 

agriculture, forest 

monitoring and 

vegetation stress 

detection.  

Sims & 

Gamon,2002 

Red Edge normalized 

difference vegetation 

index (RENDVI) 

750 705

750 705
RENDVI

 

 

−
= +  

Precision 

agriculture, forest 

monitoring and 

vegetation stress 

detection.  

Sims & 

Gamon,2002 

Red Edge Position 

Index (REPI) 

690 740

700 730

p p
REPI p p

−
= −  

Sensitive to 

changes in 

chlorophyll 

concentration.  

Curran., et al 
.1995 

Vogelmann Red Edge 

Index 1 (VREI1) 

740
1 720

p
VREI p=

 
Vegetation 

phenology (growth) 

studies, Precision 

agricultural and 

vegetation 

productivity 

modeling. 

Vogelmann,et 

al.1993 
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Canopy 

Water 

Content 

 

Moisture Stress Index 

(MSI) 

1599

819
MSI



=

 
Canopy stress 

analysis, 

Productivity and 

modeling fire 

hazard condition 

analysis. 

Ceccato ,et 

al.2001 

Normalized 

Difference Infrared 

Index (NDII) 

( 819 1649)

( 819 1649)

P P
NDLI P P

−
= +  

Crop agricultural 

management, forest 

canopy mentoring 

and vegetation 

stress detection. 

Jackson.et 

al.2004 

Normalized 

Difference Water 

Index (NDWI) 

857 1241

857 1241
NDWI

 

 

−
= +  

Changes of canopy 

water content.  

Gao,1995 

Water Band Index 

(WBI) 

900

970
WBI



=

 
Changes of canopy 

water content. 

Penuelas et 

al.,1995 

Light Use 

Efficiency 

Index 

 

Normalized 

Differences Lignin 

Index (NDLI) 

( ) ( )
( ) ( )

log 1/ log 1/1754 1680

log 1/ log 1/1754 1680
NDLI

 

 

−
= +  

Estimate the 

amount of lignin in 

vegetation.  

Serrano et 

al.,2002 

Photochemical 

Reflectance Index 

(PRI) 

531 570

531 570
PRI

 

 

−
= +  

Estimation 

vegetation 

productivity and 

stress.  

Gamon et 

al.,1992 

Red Green Ratio 

Index (RGRI) 

RED
RGRI

GREEN



=

 
Estimate the course 

of foliage 

development in 

canopies.  

Penuelas et 

al.,1995 

Structure Insensitive 

Pigment Index (SIPI) 

800 445

800 680
SIPI

 

 

−
= −  

Effects of variation 

in canopy structure 

Penuelas et 

al.,1995 

 

 

Leaf 

Pigment 

Index 

 

Anthocyanin 

Reflectance Index_1 

(ARI-1) 

1 1
_ 1

550 700
ARI

 

   
= −      
     

Sensitive to 

anthocyanin 

amount in 

vegetation.  

Gitelson et 

al.,2001 

Carotenoids 

Reflectance Index_1 

(CRI-1) 

1 1
_ 1

510 550
CRI

 

   
= −      
     

Measure the 

amount of 

carotenoids in 

canopy.  

Gitelson et 

al.,2002 

Carotenoids 

Reflectance Index_2 

(CRI-2) 

1 1
_ 2

550 700
CRI

 

   
= −      
     

Measure the higher 

Carotenoid 

concentrations 

Gitelson et 

al.,2002 

We had used the VIs model for four different ecological indices (Greenness, leaf 

pigments, canopy water content, and light use efficiency) in our study.  

The coefficients of determination (R2) values for all narrow bands VIs were 

calculated. The Separability (S) Index between the two classes were calculated by the 

simple and robust method following Equation.4.1 (Landgrebe, 2003). 

( )

( )
1 2

1 2
dnorm

 

 

−
=

+  

 

  (Eq-4.1) 

Where,  and   are the mean and SD (standard deviation) of the individual class 

respectively. We have collected 60 field samples and divided 6 classes based on dust 
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amount (g/m2). Overall Separability (S) Index between different VIs class’s 

combinations is calculated by following the Equation.4.2. (Landgrebe, 2003): 

                                

5 61

15 1 1

i j
S

i ji j i

 

 

−
=  

+= = +

 

 

  (Eq-4.2)    

 

Where, i and j denote the vegetation indices classes. Our statistical pixel-based 

analysis for each VIs were calculated for test sample pixels and obtained the Pearson 

correlation coefficients (R2) and Separability (S) value for different VIs sample pixels 

classes. In this work, the highest R2 and S value of VIs were used for forest health 

model.  

4.3.2 Forest health spectra assessment  

The field-based spectroradiometer had collected the raw spectra in the study area 

(Figure.4.4).  Hyperion end-member derived spectra were compared with the field 

spectra using spectral similarity score method (SSM), and the result is graded or 

weighted for each pair of spectra using spectral analysis tool (Somers and Asner et al., 

2014).  
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Figure 4.4: Raw field forest spectra  obtained from field 

The maximum value indicates the closest match and shows supper confidence in the 

spectral similarity. Spectral similarity output value below or equivalent to minimum 

show accurate matches and receives a score of 1. Zero scores are assigned for spectral 

similarity result greater than or equals to the maximum. 

4.3.3 Classification techniques of forest health 

Spectral Angle Mapper (SAM) is an algorithm, which is used for Hyperspectral image 

classification. SAM is a supervised image classification process. This method was 

used to calculate the spectral similarity between two spectra through deviation in 

radians angle between the satellite image spectra and reference spectra (Kruse et al., 

1993). Spectral angle mapper identifies the spectral similarity using the following 

Equation.4.3 (De et al., 2002): 

            
1 2 1/21cos 1/2

12

1

nb
t ri i nb

ia ri
nb i

ti

i

 
 
  

− =   = 
    

=   
  =  

( )1 *cos *t ra r
t

−=
 

 

  (Eq.- 4.3) 

Where α represents spectral angle between the vectors, nb denotes the number of 

spectral bands, t denotes target pixel, and r denotes reference pixel. 

In this study, the SAM algorithm was used only for Hyperion image classification. For 

Spectral angle mapper based image classification on Hyperion data, the threshold 

value for various forest health classes was selected, ranged between 0.03o to 0.25o. 

The following threshold value of the highest radians angle viz., healthy (0.11), 

moderate (0.17), and unhealthy (0.20) were used for SAM classification. SAM 

classification parameters were used for higher accuracy measurement (Petropoulos et 

al., 2012). 

SVM algorithm is the non-parametric supervised statistical-based image classification 

method. SVM classification generates highly accurate classification results than any 

other well-known ranking methodology such as a maximum likelihood or neural 

network classifier etc. (Bruzzone et al., 1995). The main objective of the SVM 

algorithm is to search for the Optimal Separating Hyperplane (OSH). The Proper 
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result from complex and noisy data can be derived from the SVM classification. OSH 

can be calculated by following the below-mentioned Equation.4.4: 

Minimize

1 2

2 1

l
c i

i

 

 
 
 + 
 = 

  

                                                            Subject to

1 ,

0,

1, 2, ........, ,

Ty x bii i

i

i l

 



 
+  −  



=

 

 

 

 

        (Eq-4.4) 

Where, x
i  indicates training vectors in a data-set ( ) 

1

,
1'=

x yi i i
 and 

iy  is the associated label, 

ω indicates the weight vector, b indicates the bias, C indicates the penalty for 

misclassification, i
  indicates slack variables with non-negative constraint and allow 

misclassification of noisy data. The quadratic optimization problem is resolved and re-

written as follows Equation.4.5: 

                                               
( ) ( ),

1

l
f x sign a y k x x bi i i

i

 
= + 

 =   

   (Eq-4.5) 

Where ai  indicates Lagrange multipliers, ( ),k x xi  indicates the kernel purpose that projects 

the main training data into a higher-dimensional feature while computing non-linear 

decision surface. 

In this study, the SVM algorithm was used for Hyperion and Landsat- OLI data for 

full pixel classification. For SVM algorithm, the radial function kernel category was 

selected having gamma value fixed to 0.31 for Hyperion and 0.137 for Landsat-OLI 

data (Tso et al., 2009). The SVM algorithm function with penalty parameter hundred 

and pyramid value zero was used for Hyperion and Landsat- OLI data classification. 

The SVM algorithm determines the optimal gamma and penalty values, generally uses 

grid exploration method.  

4.3.4 Classification accuracy assessment 

Accuracy assessment is an important work in the classification validation system. 

Remote Sensing technology is a great source of thematic map presentation systems, 

although accuracy assessment assists how far the classification represents the real 
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world (Congalton, 1991). The overall accuracy of the classified class’s pixels was 

matched to reference ground data by the Equation.4.6 (Congalton, 1991).The SAM, 

SVM algorithms, and VIs model-based classified images were calculated for overall 

accuracy, and kappa statistic using field surveys reference data. 

( )

( )

1 1

2

1

−   + +
= =

=

−  + +
=

k k
N xii x xi i

i i
K k

N x xi i
i

 

 

    (Eq-4.6) 

Where r indicates the number of rows in the error matrix, xii indicates the number of 

observations in the ith column, and row xi+ indicates the total number of observations 

in the ith column. N is the total number of observations. The overall research flow 

chart has been shown in Figure.4.5. 

 

Figure.4.5: Research  methodology for forest health assessment 

4.4 Results and Discussion 

4.4.1 Health and unhealthy pixels detection based on VIs model 

The R2 and S values for the VIs are shown in Table.4.2. When R2 and S, acquired 

common values for MSR700, MSI, NDNI, and ARI1, VIs were comparatively high. 

Forest health mapping was accomplished by the use of narrow-band VIs viz., 
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MSR700, MSI, NDNI, and ARI1. Each VIs class has upper and lower quartiles value 

as well as mean and median, the value of which is shown in Figure.4.6.  

Table 4.2: Coefficients of determination (R2) and Separability (S) values of forest 

health based on VIs model 

Narrow  banded VIs 

 

Indices Mean 

 

SD 

 

R2 

 

S 

 

Greenness Index 

 

MNDVI705 0.47 

 

0.20 

 

0.88 

 

0.43 

 

MSR700 4.76 

 

1.83 0.76 

 

0.30 

 

RENDVI  

 

0.52 

 

0.21 

 

0.79 

 

0.28 

 

REP 

 

0.71 

 

0.01 

 

0.04 

 

0.16 

 

VOG1 1.67 0.40 0.48 0.01 

 

Canopy Water Content 

 

MSI 

 

0.77 

 

0.28 

 

0.72 

 

0.37 

 

NDII 

 

0.51 

 

0.15 

 

0.58 

 

0.07 

 

 

NDWI 

0.54 0.16  0.42 0.21  

WBI 0.97 0.11 0.24 0.17 

 

Light Use Efficiency Index 

 

NDNI 

 

0.08 

 

0.02 

 

0.59 

 

0.29 

 

PRI 

 

0.42  0.09  0.37 

 

0.14 

RGR Ratio 

 

1.17 

 

0.28 

 

0.49 

 

0.15 

 

SIPI 

 

1.01 0.25 0.50        

0.12 

Leaf Pigment Index 

 

ARI1 9.15 3.05 0.66 

 

0.32 

 

CRI1 

 

11.90 

 

2.68 

 

0.45 

 

0.24 

 

CRI2 

 

13.85 

 

1.65 

 

0.23 

 

0.21 
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Figure 4.6: Mean, median, upper and lower quartile values of  narrow banded VIs 

classes  

 

The MNDVI705 is used for little changes in canopy foliage content, gap friction, and 

canopy subsequence. NDNI and MSI are sensitive to canopy carotenoid pigment in 

the plant leaf. ARI1 index is useful where there is a high variability is in canopy 

structure or leaf pigment index. VIs model based forest health map has classified the 

health into nine classes (Figure.4.7). Forest health class 1 represents unhealthy class, 

whereas class 9 represents a healthy class. 
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Figure 4.7: VIs model based forest health classes 

4.4.2 Forest health spectra assessment 

The spectral similarity score (SAM score) between two situ reflectance field-lab 

spectra and end-member spectra were educed from Hyperion image. The similarity 

scores shows that healthy forest (0.82), moderately healthy forest (0.79) and unhealthy 
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forest (0.67). As reported by the spectral similarity scores, the healthy forest has high 

similarity between two reflectance spectra. The SAM score for the moderate healthy 

forest was medium. The score of the unhealthy forest was found lowest. The average 

reflectance spectrum of different forest health has a variation for those collected from 

field (Figure.4.8).  

 

Figure 4.8: Visual comparison of resampled field average reflectance spectra of 

different forest health class. 

4.4.3 Forest health classification and accuracy assessment 

Figure.4.9 shows the VIs model, support vector machines and spectral angle mapper 

algorithms based on the forest health classification of images of Hyperion and also, 

SVM classified image of Landsat-OLI. In total, three forest health class (viz., healthy, 

moderate and unhealthy) were mapped in the study area.  
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Figure 4.9: Forest heath mapping  (a) VIs model based  Hyperion (b) SAM 

based Hyperion  (c) SVM based  Hyperion (d) SVM based Landsat OLI 
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Healthy forest classes were distributed in the upper and lower part of Kiriburu and 

Megataburu mines as well as north-east and south-west part of the hilly sides 

.Moderately healthy forest covered the little portion of the study area and the rest area 

are covered by the unhealthy forest. The unhealthy forest is distributed mainly around 

the Kiriburu and Megataburu mine buffer area, agricultural area, scarps area, city, and 

fallow land area. The classification error matrices are shown in Table.4.3. 

Table 4.3:  Accuracy assessment results (a) SAM based on Hyperion (b) SVM based 

on Hyperion, (c) VIs based on Hyperion, and (d) SVM based on Landsat OLI 

(a) SAM based 

on Hyperion 

Healthy Moderated 

Healthy 

Unhealthy Total UA 

Healthy 11 0 2 13 82.28 

Moderated 

Healthy 

0 11 1 12 75.51 

Unhealthy 0 1 9 10 85.26 

Total 11 12 12 35  

PA 90.49 83.53 66.33   

Overall accuracy: 79.55%, kappa statistics: 0.75 

(b) SVM based 

on Hyperion 

Healthy Moderated 

Healthy 

Unhealthy Total UA 

Healthy 11 0 1 11 81.52 

Moderated 

Healthy 

0 13 0 13 74.54 

Unhealthy 2 0 10 12 70.66 

Total 13 13 11 36  

PA 91.83 85.53 80.11   

Overall accuracy: 76.53%, kappa statistics: 0.71 

   (c) VIs based 

on Hyperion 

Healthy Moderated 

Healthy 

Unhealthy Total UA 

Healthy 13 0 1 14 85.24 

Moderated 

Healthy 

1 11 0 12 78.95 

Unhealthy 0 1 10 11 72.83 

Total 14 12 11 37  

PA 90.84 81.76 76.52   

Overall Accuracy: 81.52%, Kappa Statistics: 0.79 

(d) SVM based 

on Landsat OLI 

Healthy Moderated 

Healthy 

Unhealthy Total UA 

Healthy 11 0 1 12 72.96 

Moderated 

Healthy 

0 9 0 9 64.54 

Unhealthy 0 2 8 10 62.27 

Total 11 11 9 31  

PA 72.96 64.54 62.27   

Overall Accuracy 67.21%, Kappa Statistics: 0.62 
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4.4.4 Relationship among distance from mines, forest health and foliar dust 

concentration  

Forest health conditions and nearby environments depend on its vicinity from the 

mines. The distance of sample points of forest health from mines were calculated. The 

foliar dust concentrations were collected from the field using the PCE instrument 

(Appendix.1). We have used Pearson correlation test methods for the study of the 

relationship between forest health classes, its distance from mines, and foliar dust 

amount (Table 4.4) for Kiriburu and Meghataburu mines.  

Table 4.4: Pearson method based correlation matrix amongst forest health classes, 

foliar dust concentration and mine (Kiriburu) distance. 

Pearson correlation  

 

Forest 

Health 

classes 

Leaf Dust Value 

(gm/m2) 

Distance(m) from 

Meghahatuburu 

Mine  

Forest Health class 1 -0.67 0.22 

Leaf Dust Value (gm/m2) -0.67 1 -0.45 

Distance(m) from 

Meghahatuburu Mine 0.22 -0.45 1 

Forest Health classes 1 -0.67 0.54 

Foliar dust amount 

(gm/m2) -0.67 1 -0.48 

Distance (m) from 

Kiriburu Mine 0.54 -0.48 1 

We have tested the same relationship with another mine (Meghataburu), and it was 

found that the results are the same as those obtained for Kiriburu mine. Results 

obtained from the field survey show that there is a clear relationship between the 

distance from mines, forest health classes, and foliar dust concentration (Figure.4.10). 

 

Figure 4.10: The relation amongst different forest health classes, distance from mines 

and foliar dust concentration (Kiruburu and Meghataburu)   
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4.4.5 Forest health validation  

The healthy, moderately healthy, and unhealthy components constituting the forest of 

the study area were evaluated, both at ground level and pixel- level, having the highest 

reflectance data from the NIR wavebands region. The correlation determination (R2) 

and RMS error values were evaluated from ground level and pixel-level spectral data 

(Figure.4.11). A correlation (R2=0.84) was observed between the ground level and 

pixel-level for class healthy, and an RMS error of 3.98 was found. A correlation 

(R2=0.86) was observed between the ground level and pixel-level for class moderately 

healthy, and an RMS error of 2.06 was found. And a correlation (R2=0.87) was 

observed between the ground level and pixel-level for class unhealthy, and an RMS 

error of 1.25 was found.  

  

 

Figure 4.11: Correlation between field reflected spectra and pixel reflected spectra 

of healthy, moderate healthy and unhealthy forest class. 

The six variables (ground level and pixel level: healthy, moderately healthy, and 

unhealthy) were presented in a scatter matrix (pair-wise scatter plot) plot (Figure. 
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4.12).  It shows positive and negative correlation as well as standard error of six 

variables. 

 

Figure 4.12:  6×6 Scatter matrix plot (3 from satellite data and 3 obtained from field 

data) 

4.4.6 Discussion 

As per the result obtained in this chapter, we could infer that, Hyperspectral data 

(Hyperion) has more capability in forest health assessment when coupled with field 

spectra (as shown in Kiriburu as well as Meghahatuburu mining and surrounding 

forest areas) than any other multispectral data (Landsat).  

In the VIs model l based forest health study, maximum correlation coefficients and 

separability values were obtained from the MNDVI705. The MNDVI705 index works 

well with the lower chlorophyll content, so it is accepted for appreciable forest health 

results (Kumar et al., 2015). The test of forest health results for leaf pigment’s VIs is 

relatively lower than any other vegetation indices. In leaf pigment VIs, the value of 

ARI1 is high than other VIs (Penuelas et al., 1994). For light use efficiency, VIs value 
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is relatively higher than that of leaf pigment VIs (Jenkins et al., 2007). NDNI is a 

useful index where there exhibits a high variability in the canopy or leaf pigment 

structure (Rodríguez et al., 2007). The test result for the canopy water content index 

was low because of vegetation canopy structure (Sims et al., 2002). In general, VIs 

correlation and separability values were compared with the earlier forest health studies 

(Tuominen et al., 2009) have shown the highest correlation and separability values 

with NDVI (broad-bands); MNDVI705 (Narrow-bands) for greenness VIs, ARI1 

(Narrow-bands) for leaf pigment VIs and MSI (Narrow-bands) for canopy water 

content VIs. 

The reflectance spectra for the healthy forest were recorded higher in the near-infrared 

region. The reflectance spectra for the unhealthy forest were recorded lower in the 

near-infrared region. The near-infrared (NIR) region shows higher value due to high 

chlorophyll pigment spectra, and the leaf’s chlorophyll pigment spectra are closest to 

the canopy (Carter et al., 2001). The result was matched with the previous study about 

the tree’s leaf reflectance spectra and had shown a positive correlation (Curran, 1989; 

Curran and Peterson, 2001). Although the two reflectance spectra for different forest 

health status are sufficiently analogous, yet the amplitude of lab reflectance spectra is 

always higher than Hyperion image reflectance spectra. The Hyperion image 

reflectance spectra has a lower amplitude as it has a weak signal-to-noise ratio. 

Landsat-OLI image classification by SVM algorithm, showing the overall accuracy of 

67.21% and a kappa statistic of 0.62. Hyperion image-based classification (VIs model) 

got an overall accuracy of 81.52 % and a kappa statistic of 0.79. The forest health 

classification educed by the VIs model classifier on Hyperion image showed better 

results than SVM algorithm classification on Landsat-OLI image. The forest health 

classification by SAM algorithm (Overall accuracy: 79.55%, kappa statistics: 0.75) 

shown the better result than SVM algorithm-based classification (76.53%, kappa 

statistics: 0.71) on Hyperion image. Hyperion image-based VIs model (Overall 

Accuracy: 81.52%, Kappa Statistics: 0.79) for forest health classification shown the 

best result among all the classifications. Some previous studies have shown the 

undertaking for getting better forest health classification through Hyperspectral remote 

sensing. George et al., (2014) shown the better forest classification through 

Hyperspectral remote sensing and compared the classification results obtained from 

Hyperion and Landsat TM sensors for the study of Western Himalaya and obtained 
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collective accuracies of 81.52 % and 69.62 % respectively. Thenkabail et al., 2004 

compared the classification results of different sensors viz., Hyperion, IKONOS, ALI, 

and ETM+ sensors for the study of African rainforests and obtained collective 

accuracies of 93.2%, 87.46 %, 81.53%, and 76.9% respectively.  

The forest health risk arises from mining dust, which may lead to the plant’s growth 

problem (Tuominen et al., 2009). A good correlation was observed between the 

distance from (Kiriburu and Meghahataburu) mines, foliar dust concentration, and 

forest health classes. This relationship indicates that the quality of the forest depends 

on the distance from mines and foliar dust concentration as well. Tuominen et al. 

(2008) showed a clear relationship between leaf reflectance and tree’s distance from 

mines. The result obtained for both the mining areas (Kiriburu and Meghahatuburu) 

has a strong correlation. This reason being the same type of vegetation, foliar dust 

concentration and distance from mines. 

This work involved, the validation (R2) of forest health result as well as standard error 

(S) and shown on a scatter-matrix error plot. There may be various reasons behind the 

error in the forest health result. Hyperion satellite image spectra have a lower 

amplitude as it has a higher noise ratio (Shaw et al., 2003). Hyperion satellite image 

spectra also get affected by atmospheric components. Infield spectra, during the time 

of data collection, some noise data were also self-generated (Vaiphasa, 2006). The 

field Spectroradiometer has different inherent variation in detector sensitivity with the 

varying temperature causes temperature drifts error. The study area is located in the 

hilly region, which induces the shadow effect on the satellite image (Ittenn & Meyer, 

1993). The spatial resolution of the Hyperion image is 30 × 30 meter pixel, which 

consequences to the problem of mixed pixels in the study area (Lee & Lathrop, 2005). 

4.5 Summary  

This chapter aimed at describing the potential of Hyperion and Landsat satellite 

imagery, ground tree spectra data and foliar dust data for forest health assessment in 

Kiriburu and Meghahataburu iron ore mines and its vicinage. This work is first of its 

kind, which attempts to use hyperspectral satellite data with field spectra data to assess 

forest health and correlate it with mines induced foliar dust and environment. The 

study focuses on the particular section of 21 wave-bands from hyperspectral remote 

sensing data, and classification is done on the VIs tool, SVM, and SAM algorithms for 
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yielding better forest health assessment results. In this study, a good correlation was 

shown between forest health and distance from mines with leaf dust. It means that as 

the mining area increases forest as well as the environment will also get affected. We 

hope that our work could serve as the base, and the methodology can also be applied 

to different mines related forest areas with certain modifications in the forest health 

parameters. The forest health map obtained provides a guideline for geo-

environmental planning and management in mining proximity forest area. 
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