## M.Sc. 4th Semester Examination, 2014 PHYSICS

PAPER - PHS-403

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP - A

[ Marks : 20 ]

Answer Q. Nos. 1 & 2 and one from the rest

1. Answer any two bits:

 $2 \times 2$ 

(a) Find an expression for barrier potential in a symmetric *p-n* junction which is under equilibrium condition.

(Turn Over)

- (b) Explain what is meant by indirect recombination.
- (c) The minority carrier lifetime in p-type material is  $10^{-7}$  second. The mobility of electron in silicon is  $0.15 \text{ m}^2\text{V}^{-1}\text{S}^{-1}$  at 300 K. If  $10^{20}$  electron/m<sup>3</sup> are injected at x = 0, what is the diffusion current density just at the junction.

## 2. Answer any two bits:

 $3 \times 2$ 

3.

- (a) Clearly explain with help of band diagram the formation of ohmic contact. What is varicaps? 2+1
- (b) Assuming average relaxation time  $\langle z \rangle$  in a non-degenerate semiconductor. Find an expression of mobility in the low temperature region.
- (c) A hypothetical semiconductor has an intrinsic carrier concentration of  $1.0 \times 10^{10}$ /cm<sup>3</sup> at 300 K, it has conduction band and valence band effective densities of states  $N_c$  and  $N_v$ , both equal to  $10^{19}$ /cm<sup>3</sup>.

- (i) What is the band gap  $E_g$ ?
- (ii) If the semiconductor is doped with  $N_d = 1 \times 10^{16}$  donors/cm<sup>3</sup>, what are the equilibrium electron and hole concentrations at 300 K.  $1\frac{1}{2} + 1\frac{1}{2}$
- 3. Explain what is meant by diffusion length. Find an expression of diffusion length of hole assuming a p-n junction is forward biased. Find an expression of diode equation. 2+4+4
- 4. What is meant by equilibrium and nonequilibrium carriers in a semiconductor. Find an expression of growth of carriers in a semiconductor when the light is switched on (Assuming  $hv > E_g$ ). What is meant by linear recombination? 2 + 5 + 3

## GROUP - B

[ Marks : 20 ]

Answer Q. No. 1 and any one from the rest

1. Attempt any five:

 $2 \times 5$ 

(a) What is the difference between X-ray diffraction and neutron diffraction?

(Turn Over

- (b) What is the difference between sputtering and thermal evaporation?
- (c) What do you mean by low-dimensional material? Give example.
- (d) What do you mean by e-gun? Give example.
- (e) What is the basic principle of XPS?
- (f) Give schematically different part of SEM with proper name.
- (g) What do you mean by adsorption and desorption? Give example.
- 2. (a) Describe briefly the synthesis technique of MOCVD.
  - (b) How ALD is better than MBE?
  - (c) What do you mean by "bottom up" approach and "top down" approach?
  - (d) VLS technique is a good method of CNT synthesis. True or false? Justify. 4+2+2+2

- 3. (a) What is the working principle of STM?
  - (b) If an electron beam interacts with an unknown material then what are different possibilities that may take place?
  - (c) Write a short note on VSM or TEM.
  - (d) What will be pressure level in UHV system? 3+3+3+1