M.Sc. 2nd Semester Examination, 2014

PHYSICS

PAPER - PHS-201(A + B)

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP - A

[Marks : 20]

Time: 1 hour

Answer Q. Nos. 1 and 2 and any one from the rest

1. Answer any three bits:

 2×3

(a) Simplify $(\vec{\sigma}.\vec{A})(\vec{\sigma}.\vec{B})$.

(Turn Over)

- (b) A particle is in an eigenstate of J_z . Find the value of $\langle j, m | J_x | j, m \rangle$.
- (c) An electron is in the p state with orbital angular momentum quantum number l=1, and spin angular quantum number s=1/2. Find the wave function for the state

$$\left|\frac{3}{2},\frac{1}{2}\right\rangle$$
 and $\left|\frac{1}{2},\frac{1}{2}\right\rangle$

using Clebsch Gordan coefficients.

(d) Obtain the eigenvalues of the operator

$$k = \frac{\beta(\overrightarrow{\sigma^d}.\overrightarrow{L} + \hbar)}{\hbar}$$

(e) Consider a system in the unperturbed state described by the Hamiltonian

$$H = \begin{bmatrix} E_0 & 0 \\ 0 & E_0 \end{bmatrix}.$$

The system is subjected to a perturbation of the form

$$H' = \begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

Where A and B are very small quantities in comparison to E_0 . Find the energy eigenvalues of the perturbed system.

2. Answer any one bit:

4

- (a) Write Dirac Hamiltonian for an electron in an electromagnetic field. Show that the equation in the non-relativistic limit contain terms which represent the interaction potential of magnetic moment due to both orbital and spin motion with the magnetic field.
- (b) A particle of mass m is bound by the potential $V(r) = -V_0 e^{-r/a}$. Using the variation method with a trial wave function $\psi(r) = Ne^{-br}$ find the ground state energy.

- 3. (a) Establish the stationary perturbation theory for non-degenerate states and obtain the first and second order correction to energy level and first order correction of the wave function.
 - (b) In an infinite square well potential with walls at 0 and a, a portion OAB has been sliced off as shown in the picture. The sliced portion is represented by a perturbing potential

$$H' = \frac{V_0 x}{a}.$$

Find the change in the ground state energy level to first order in the perturbing potential.

10

(Continued)

4. Obtain the plane-wave solution for the spin half particle in the relativistic formalism. Write the four component wave functions corresponding to the \pm energy and the two spin states in matrix form. 10

[Marks : 20]

Time: 1 hour

Answer Q. No. 1 and any one from the rest

- 1. Answer any five from the following: 2×5
 - (a) Find the Laplace transform of the triangular wave of period 2a given by

$$f(t) = \begin{cases} t, & 0 < t < a \\ 2a - t, & a < t < 2a \end{cases}$$

- (b) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.
- (c) Solve the partial differential equation:

$$\frac{\partial^2 z}{\partial x^2} + z = 0,$$
given that when $x = 0$, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$.

- (d) Define Lie group.
- (e) Write a short note on direct product of two groups.
- (f) Write down the self adjoint differential operator in one and three dimensions.
- (g) If $G = \{1, i, -1, -i\}$ be a group then find the class of G.
- (h) Prove that equivalent representations have the same set of character.
- 2. (a) Show that the function $y(x) = (1 + x^2)^{-3/2}$ is a solution of the volterra integral equation

$$y(x) = \frac{1}{1+x^2} - \int_0^x \frac{t}{1+x^2} y(t) dt$$

(b) Use Laplace transform to solve $ty'' + 2y' + ty = \cos t$ given that y(0) = 1. 5 + 5 3. (a) Find the Green's function for

$$\frac{d^2y(x)}{dx^2}+y(x)=0,$$

subject to the conditions y(0) = 0 and y'(1) = 0.

(b) Construct the character table for the group D_3 . 5+5