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some decision-making problems under

complex neutrosophic environment
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8.1 Introduction
One of the important and challenging issues in our day-to-day life is the presence of
uncertainty to be addressed. Neutrosophic set theory [149, 150] is one of the innovative
generalizations of fuzzy set theory [183] where, three independent membership grades (truth
membership (T (x)), indeterminate membership (I(x)) and false membership (F (x)) where,
T (x), I(x), F (x) ∈ [0, 1] and 0 ≤ T (x) + I(x) + F (x) ≤ 3) have been considered together.
In the last few decades, neutrosophic set has been improved widely and further successfully
used to solve various types of real-life problems. Authors can follow the
references [166, 181, 189] to study the applications of neutrosophic set in real-life

Furthermore, Romot et al. [137] extended fuzzy membership to complex membership
(µC(x)) by adding a second dimension u(x) as, µC(x) = r(x)eiu(x) and introduced the
concept of complex fuzzy set, where, r(x) ∈ [0, 1] is the amplitude term and u(x), a real

1This chapter has been published in Engineering Applications of Artificial Intelligence, 89 (2020): Article

ID-103432, ELSEVIER.
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number, is the phase term. In many different fields where, adding a second decision
information of an object over an attribute is needed to get a better and accurate result,
complex fuzzy set can be applied to solve these problems. Latter, Alkouri and Salleh [8]
proposed complex intuitionistic fuzzy set by using both the membership degree and non
membership degree in complex fuzzy sense. Then, Ali and Smarandache [12] introduced
complex neutrosophic set by introducing each of truth membership, indeterminate
membership and false membership in complex sense.

Besides, researchers generalized soft set theory [118] to several new fields such as, Fuzzy
soft set theory [22] intuitionistic fuzzy soft set theory [105], neutrosophic soft set
theory [24], etc. and used them for handling real-life related problems. Meanwhile, complex
fuzzy valued generalization of soft set theory have also been developed by the researchers.
For instance, Thirunavukarasu et al. [158] introduced the concept of complex fuzzy soft set
theory by taking all the parameters in a soft set in complex fuzzy sense. Then,
Selvachandran et al. [144] initiated complex vague soft set theory by taking all the
parameters in a vague soft set in complex fuzzy sense. Moreover, they also proposed some
different types of distance measures on complex vague soft sets [144] to solve pattern
recognition problems. Furthermore, the relations between complex vague soft sets have
been thrived by Selvachandran et al. [145]. In addition, Broumi et al. [29] introduced
complex neutrosophic soft set theory by taking all the parameters in a soft set in complex
neutrosophic sense.

After surveying the above literature, complex neutrosophic set theory, introduced by Ali
and Smarandache [12], first motivates us to use this concept in soft set theory, developed by
Molodtsov [118], to solve some real-life based decision making problems. Then, we have
studied complex neutrosophic soft set in decision-making, proposed by Broumi et al. [29],
from which some shortcomings have been raised in our mind.

• In a complex neutrosophic soft set based real-life decision-making problem, all the
parameters may not be uniform in nature i.e., conflicting parameters may exist in the
parameter set. But, in their approach, they do not give any process to handle this type
of the parameters.

• Moreover, all the considered parameters in a decision-problem may not have equal
weight. But, their approach can only be applied to the decision-making problems where
all weights of the parameters are equal. So, when parameters will have unequal weights
then, we can not embed their algorithm to solve a complex neutrosophic soft set based
problem.

• Besides, the main flavor of complex neutrosophic soft set is in its additional phase term.
Because, through this idea, we can handle more complicated real-life related problems
having a second dimension. But, in their illustrated decision-making problem, they do
not give any idea about the phase part.
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Therefore, to fulfil these research gaps, we are motivated to develop some decision-making
methods in soft set theory under complex neutrosophic environment to take a quality of
decision from several types of real-life related problems. Moreover, to avoid complexity in
solving real-life data based problems, sometimes, transformation from an uncertain value
into a real value becomes very necessary. But, there is no such definition in literature for a
complex neutrosophic number. Besides, VIKOR method ( [124]) is a popular multi-criteria
decision-making methodology which provides a compromise optimal solution of a
decision-making problem. So, if this familiar optimization method is used in solving
complex neutrosophic soft set based decision-making problems, then compromise optimal
solution would be obtained as a solution instead of a general optimal solution.

From the above aforementioned analysis, our main contributions can be highlighted as
following:

• A new definition of score function of a complex neutrosophic number has been
proposed to transform a complex neutrosophic number into some real value in the
interval [0, 1].

• Two algorithmic approaches have been developed to solve complex neutrosophic soft
set based decision-making problems by using VIKOR method.

• Some real-life related problems have been discussed and solved to illustrate the work-
ing progress of our proposed approach.

The outline of this chapter is as follows. In Section 8.2, some basic terminologies have
been recalled. In Section 8.3 and Section 8.5, we have introduced some set-theoretic
operations for complex neutrosophic sets and complex neutrosophic soft sets respectively. In
Section 8.4, a new definition of score function of a complex neutrosophic number has been
proposed. After that, we have provided two algorithms for complex neutrosophic soft set
based decision-making problems as given in Section 8.6. Then, some applications of our
proposed approaches including company’s manager selection problem, sustainable
manufacturing material selection problem and medical diagnosis problem etc. have been
discussed and solved in Section 8.7. Finally in Section 8.8, we have discussed the sensitivity
analysis, validity and effectiveness of our proposed approach. Section 8.9 contains the
conclusion of this chapter.

8.2 Some basic relevant notions
(i) Complex neutrosophic soft set (CNSS) [29].

A pair (fC̃N , E) is said to be a complex neutrosophic soft set (CNSS) over the universal
set X if and only if, fC̃N a function from the parameter set E to the set of all complex
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neutrosophic subsets of the set X i.e., fC̃N : E → ˜̃ρ(X) where, ˜̃ρ(X) is the set of all
complex neutrosophic subsets of the set X . Mathematical it can be defined as follows,

(fC̃N , E) = {(e, fC̃N (e))|∀e ∈ E},
where, fC̃N (e) is the set of all complex neutrosophic e-approximate elements of the set X
such that,

fC̃N (e) = {(xs, (Tf (e)(xs), If (e)(xs), Ff (e)(xs))) |∀ xs ∈ X}
= {(xs, (pf (e)(xs)eiuf (e)(xs), qf (e)(xs)e

ivf (e)(xs), rf (e)(xs)e
iwf (e)(xs)))}.

Here, all the amplitude terms pf (e)(xs), qf (e)(xs), rf (e)(xs) are limited in the closed
interval [0, 1] with 0 ≤ pf (e)(xs) + qf (e)(xs) + rf (e)(xs) ≤ 3 and all the phase terms
uf (e)(xs), vf (e)(xs), wf (e)(xs) are limited in the closed interval [0, 2π].

(ii) Complement of a complex neutrosophic set [12, 185].

The complement of a complex neutrosophic set
C̃N = {(x, (p(x)eiu(x), q(x)eiv(x), r(x)eiw(x)))|x ∈ X} over the universal set X is denoted
by C̃c

N and is defined as follows:
C̃c
N = (r(x)ei(2π−u(x)), (1− q(x))ei(2π−v(x)), p(x)ei(2π−w(x))).

(iii) Distance of two complex neutrosophic sets [12].

Let C̃A and C̃B be two complex neutrosophic sets over X where, ∀x ∈ X ,
C̃A =

(
pA(x)eiuA(x), qA(x)eivA(x), rA(x)eiwA(x)

)
,

C̃B =
(
pB(x)eiuB(x), qB(x)eivB(x), rB(x)eiwB(x)

)
.

Then, the distance between C̃A and C̃B is defined as follows:

d̃CN(C̃A, C̃B) = max(max(sup
x∈X
|pA(x)− pB(x)|, sup

x∈X
|qA(x)− qB(x)|,

sup
x∈X
|rA(x)− rB(x)|),max(

1

2π
sup
x∈X
|uA(x)− uB(x)|,

1

2π
sup
x∈X
|vA(x)− vB(x)|, 1

2π
sup
x∈X
|wA(x)− wB(x)|))

(iv) Normalization process [131].

A multi-criteria decision-making (MCDM) problem contains a set of alternatives
({A1, A2, .., AM}) and a set of corresponding parameters ({E1, E2, .., EN}). The rating of
the alternatives are evaluated based on the associated parameters. Let, Fsj be the rating of an
alternative As; s = 1, 2, ..,M over a parameter Ej; j = 1, 2, .., N . Now, in a
decision-making problem, not all the parameters may be based on the same environment,
therefore, they may not be commensurable to one another. Then, to handle these parameters,
normalization process can be used by which, all the parameters become dimension less.
Some popular normalization techniques are as follows:
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(1) Linear sum normalization. Rsj =
Fsj
M∑
s=1

Fsj

; j = 1, 2, .., N ; s = 1, 2, ..,M .

(2) Linear max normalization. Rsj =
Fsj

F+
j

; where, F+
j is the ideal evaluation over ej .

(v) VIKOR method [124].

VIKOR method is a well-known optimization technique which provides a compromise
optimal solution by testing ‘acceptable advantage’ and ‘acceptable stability’ in decision-
making. This method contains the following steps:
Step 1. Define the ideal solution A+ = {F+

1 , F
+
2 , .., F

+
N }, where, F+

j = maxs{Fsj}; s =
1, 2, ..,M ; j = 1, 2, .., N .
Step 2. Obtain the group of utility (utility measure) Ss and individual regret (regret measure)
Rs of each of the alternatives as,

Ss =
N∑
j=1

wjd(Fsj, F
+
j ); Rs = maxNj=1wjd(Fsj, F

+
j ).

w = {w1, w2, .., wN} be the weights of the parameters such that, wj ≥ 0 and
N∑
j=1

wj = 1.

Step 3. Then, determine the VIKOR index Qs of an alternative As is defined as follows,
Qs = θ ( Ss−minsSs

maxsSs−minsSs ) + (1− θ) ( Rs−minsRs
maxsRs−minsRs )

where, θ ∈ [0, 1] is the weight of strategy of the maximum group of utility.
Step 4. Rank the alternatives based on the decreasing order of Ss, Rs and Qs; s = 1, 2, ..,M .
Step 5. Now, suppose The alternativeA1 is the best alternative based on the VIKOR indexQ.
Then, it will be a compromise optimal solution if the following two conditions are satisfied:
(C1) Acceptable advantage: Q(A2)−Q(A1) ≥ DQ (a threshold value) = 1

M−1
,

where, A2 is the second best alternative based on Q.
(C2) Acceptable stability: The alternative A1 is also the best for the both S and R.
If any one of C1 and C2 is fail, then a set of compromise optimal solutions will be obtained
as a optimal solution as follows:
⇒ If the condition C1 is dissatisfied, then a set of M ′ number of alternatives
{A1, A2, .., AM

′
} will be the compromise optimal solutions, where, AM

′
is obtained from

Q(AM
′
)−Q(A1) < DQ for the maximum value of M ′ .

⇒ If the condition C2 is not satisfied then, A1 and A2 both will be the optimal solutions.

8.3 Some operations on complex neutrosophic sets
Basic set-theoretic operations are very useful to deal with real-life problems. In 2009, Zhang
et al. [185] (Appendix B) defined some set-theoretic operations for complex fuzzy sets.
Now, we have extended these ideas to complex neutrosophic sets. Here, we have used
Smarandache’s [149, 150] neutrosophic operations (given in Appendix A) as follows:
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Let, C̃A and C̃B be two complex neutrosophic sets over the universal set X where,
C̃A = (TC̃A , IC̃A , FC̃A) = (pAe

iuA , qAe
ivA , rAe

iwA) and
C̃B = (TC̃B , IC̃B , FC̃B) = (pBe

iuB , qBe
ivB , rBe

iwB).

Definition 8.1. Complex neutrosophic intersection.
Then, complex neutrosophic intersection of C̃A and C̃B is denoted by, C̃A∩̃N C̃B and is
defined as, C̃A∩̃N C̃B = (TC̃A∩̃F C̃B , IC̃A∩̃F C̃B , FC̃A∩̃F C̃B) where, ∩̃F is the complex fuzzy
intersection. Now,

• Complex neutrosophic standard intersection.
Complex neutrosophic standard intersection of C̃A and C̃B is denoted by, C̃A∩̃minN C̃B =(
TC̃A∩̃minF C̃B

, IC̃A∩̃minF C̃B
, FC̃A∩̃minF C̃B

)
and is defined as,

C̃A∩̃minN C̃B =
(
min(pA, pB)eimin(uA,uB),min(qA, qB)eimin(vA,vB),

min(rA, rB)eimin(wA,wB)
)
.

• Complex neutrosophic product.
Complex neutrosophic product of of C̃A and C̃B is defined follows:

C̃A◦̃N C̃B =
(
pA.pBe

i2π
(
uA
2π
.
uB
2π

)
, qA.qBe

i2π
(
vA
2π
.
vB
2π

)
, rA.rBe

i2π
(
wA
2π
.
wB
2π

))
.

• Complex neutrosophic bold intersection.
Complex neutrosophic bold intersection of C̃A and C̃B is defined as follows:
C̃AẽN C̃B =
(max(0, pA + pB − 1)eimax(0,uA+uB−2π),max(0, qA + qB − 1)eimax(0,vA+vB−2π),
max(0, rA + rB − 1)eimax(0,wA+wB−2π)).

Definition 8.2. Complex neutrosophic union.
complex neutrosophic union of C̃A and C̃B is denoted by, C̃A∪̃N C̃B and is defined as,
C̃A∪̃N C̃B = (TC̃A∪̃F C̃B , IC̃A∪̃F C̃B , FC̃A∪̃F C̃B), where, ∪̃F is the complex fuzzy union.

• Complex neutrosophic standard union.
Complex neutrosophic standard union of C̃A and C̃B is defined as,
C̃A∪̃maxN C̃B =

(
max(pA, pB)eimax(uA,uB),max(qA, qB)eimax(vA,vB),

max(rA, rB)eimax(wA,wB)
)
.

• Complex neutrosophic algebraic sum.
Complex neutrosophic algebraic sum C̃A and C̃B is defined as,
C̃AũN C̃B =(
(pA + pB − pA.pB)ei2π

(
uA
2π

+
uB
2π
−uA

2π
.
uB
2π

)
, (qA + qB − qA.qB)ei2π

(
vA
2π

+
vB
2π
− vA

2π
.
vB
2π

)
,

(rA + rB − rA.rB)ei2π
(
wA
2π

+
wB
2π
−wA

2π
.
wB
2π

))
.

• Complex neutrosophic bold sum.
Complex neutrosophic bold sum of C̃A and C̃B is defined as,
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C̃Ad̃N C̃B =
(
min(1, pA + pB)eimin(2π,uA+uB),min(1, qA + qB)eimin(2π,vA+vB),

min(1, rA + rB)eimin(2π,wA+wB)
)
.

Definition 8.3. Complex neutrosophic bounded difference.
Complex neutrosophic bounded difference of C̃A and C̃B is denoted by, C̃A	̃N C̃B and is
defined as, C̃A	̃N C̃B =

(
max(0, pA − pB)eimax(0,uA−uB),max(0, qA − qB)eimax(0,vA−vB),

max(0, rA − rB)eimax(0,wA−wB)
)
.

Definition 8.4. Aggregation of m complex neutrosophic sets.
Let, C̃s = (pse

ius , qse
ivs , rse

iws); s = 1, 2, ..,m be the m complex neutrosophic sets over the
universeX . Then, different types of aggregations ofm complex neutrosophic sets are defined
as follows:

• Complex neutrosophic arithmetic mean aggregation of m complex neutrosophic sets
C̃1, C̃2, .., C̃m is denoted by, C̃1⊕̃

AM
N C̃2⊕̃

AM
N ..⊕̃AMN C̃m and is defined as follows,

C̃1⊕̃
AM
N C̃2⊕̃

AM
N ..⊕̃AMN C̃m =

(
1
m

(p1 + p2 + ..+ pm)ei
1
m

(u1+u2+..+um),
1
m

(q1 + q2 + ..+ qm)ei
1
m

(v1+v2+..+vm), 1
m

(r1 + r2 + ..+ rm)ei
1
m

(w1+w2+..+wm)
)
.

• Complex neutrosophic geometric mean aggregation of m complex neutrosophic sets
C̃1, C̃2, .., C̃m is denoted by, C̃1⊕̃

GM
N C̃2⊕̃

GM
N ..⊕̃GMN C̃m and is defined as follows,

C̃1⊕̃
GM
N C̃2⊕̃

GM
N ..⊕̃GMN C̃m =

(
(p1.p2....pm)1/2ei2π(

u1
2π
.
u2
2π
....um

2π
)1/2 ,

(q1.q2....qm)1/2ei2π(
v1
2π
.
v2
2π
.... vm

2π
)1/2 , (r1.r2....rm)1/2ei2π(

w1
2π
.
w2
2π
....wm

2π
)1/2
)

• Complex neutrosophic harmonic mean aggregation of m complex neutrosophic sets
C̃1, C̃2, .., C̃m is denoted by, C̃1⊕̃

HM
N C̃2⊕̃

HM
N ..⊕̃HMN C̃m and is defined as follows,

C̃1⊕̃
HM
N C̃2⊕̃

HM
N ..⊕̃HMN C̃m =

(
( m

1
p1

+ 1
p2

+..+ 1
pm

)e
i2π
(

m
2π
u1

+ 2π
u2

+..+ 2π
um

)
,

( m
1
q1

+ 1
q2

+..+ 1
qm

)e
i2π
(

m
2π
v1

+2π
v2

+..+ 2π
vm

)
, ( m

1
r1

+ 1
r2

+..+ 1
rm

)e
i2π
(

m
2π
w1

+ 2π
w2

+..+ 2π
wm

))
.

Example 8.1. Let, X = {x1, x2, x3} and C̃A = {(x1, (0.6e
i2π, 0.4eiπ, 0.5ei2π)),

(x2, (0.8e
iπ, 0.3eiπ, 0.2ei2π)), (x3, (0.3e

iπ/2, 0.5ei2π, 0.1eiπ))} and
C̃B = {(x1, (0.4e

iπ, 0.6eiπ, 0.8ei2π)), (x2, (0.7e
iπ, 0.3eiπ, 0.4ei2π)),

(x3, (0.1e
iπ, 0.5ei2π, 0.7eiπ/2))} be two complex neutrosophic sets over X . Then,

(i)C̃A∩̃minN C̃B = {(x1, (0.4e
iπ, 0.4eiπ, 0.5ei2π)), (x2, (0.7e

iπ, 0.3eiπ, 0.2ei2π)),
(x3, (0.1e

iπ/2, 0.4eiπ, 0.1eiπ/2))}.

(ii) C̃A◦̃N C̃B = {(x1, (0.24eiπ, 0.24eiπ/2, 0.4ei2π)), (x2, (0.5e
iπ/2, 0.09eiπ/2, 0.08ei2π)),

(x3, (0.03eiπ/4, 0.2eiπ, 0.07eiπ/4))}.
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(iii)
C̃AẽN C̃B = {(x1, (0e

iπ, 0ei0, 0.3ei2π)), (x2, (0.5e
i0, 0ei0, 0ei2π)), (x3, (0e

i0, 0eiπ, 0ei0))}.

(iv) C̃A∪̃maxN C̃B = {x1/(0.6e
i2π, 0.6eiπ, 0.8ei2π), x2/(0.8e

iπ, 0.3eiπ, 0.4ei2π),
x3/(0.3e

iπ, 0.5ei2π, 0.7eiπ)}.

(v)
C̃AũN C̃B = {(x1, (0.76ei2π, 0.76ei3π/2, 0.9ei2π)), (x2, (0.94ei3π/2, 0.51ei3π/2, 0.52ei2π)),
(x3, (0.37ei5π/4, 0.7ei2π, 0.73ei5π/4))}.

(vi) C̃Ad̃N C̃B = {(x1, (1e
i2π, 1ei2π, 1ei2π)), (x2, (1e

i2π, 0.6ei2π, 0.6ei2π)),
(x3, (0.4e

i3π/2, 0.9ei2π, 0.8ei3π/2))}.

(vii) C̃A⊕̃
AM
N C̃B = {(x1, (0.5e

i3π/2, 0.5eiπ, 0.65ei2π)), (x2, (0.75eiπ, 0.3eiπ, 0.3ei2π)),
(x3, (0.2e

i3π/4, 0.45ei3π/2, 0.4ei3π/4))}.

(viii)

C̃A⊕̃
GM
N C̃B = {(x1, (0.49ei1.42π, 0.49ei1.42π, 0.63ei2π)), (x2, (0.75eiπ, 0.3eiπ, 0.28ei2π)),

(x3, (0.17ei0.7π, 0.45ei1.42π, 0.26ei0.7π))}.

(ix) C̃A⊕̃
HM
N C̃B = {(x1, (0.48ei4π/3, 0.48eiπ, 0.5ei2π)), (x2, (0.75eiπ, 0.3eiπ, 0.27ei2π)),

(x3, (0.15ei2π/3, 0.44ei4π/3, 0.175ei2π/3))}.

(x) C̃A	̃N C̃B = {(x1, (0.2e
iπ, 0ei0, 0ei0)), (x2, (0.1e

i0, 0ei0, 0ei0)),
(x3, (0.2e

i0, 0.1eiπ, 0eiπ/2))}.

8.4 Score function of a complex neutrosophic number

Some times in real-life decision-making problems, comparing uncertain evaluations such as
fuzzy evaluations, intuitionistic fuzzy evaluations, neutrosophic evaluations, etc. is very
necessary. In such cases, if we transform these uncertain values into some real values, then
we can easily compare them. Therefore, in this section, we have introduced a new definition
of score function of a complex neutrosophic number to convert this uncertain number into
some real number in the closed interval [0, 1].

Definition 8.5. Let, C̃N = (T, I, F ) = (p(x)eiu(x), q(x)eiv(x), r(x)eiw(x)) be a complex
neutrosophic number where, p(x), q(x), r(x) are the amplitude parts and u(x), v(x), w(x)
are the phase parts of the truth membership (T ), indeterminate membership (I) and false
membership (F ) of C̃N , p(x), q(x), r(x) ∈ [0, 1] with 0 ≤ p(x) + q(x) + r(x) ≤ 3 and
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u(x), v(x), w(x) ∈ [0, 2π].
The venn diagram of a complex neutrosophic number C̃N has been given in Figure 8.1.

Figure 8.1: Venn diagram of a CNN

Then, the score function of C̃N is denoted by, Ŝcr(C̃N) and is defined as follows:

Ŝcr(C̃N) =
1

6

{
[p(x) + (2− (q(x) + r(x)))] +

1

2π
[u(x) + (4π − (v(x) + w(x)))]

}
(8.1)

The score function of a complex neutrosophic number measures the accuracy of the number
C̃N in favor of truth degree.

Theorem 8.1. Let C̃A =
(
pAe

iuA , qAe
ivA , rAe

iwA
)

and C̃B =
(
pBe

iuB , qBe
ivB , rBe

iwB
)

be
two complex neutrosophic numbers over the universal set X where,
pA, qA, rA, pB, qB, rB ∈ [0, 1] with 0 ≤ pA + qA + rA ≤ 3, 0 ≤ pB + qB + rB ≤ 3 and
uA, vA, wA, uB, vB, wB ∈ [0, 2π].
Then, our proposed score function (Ŝcr) satisfies the following properties.
(i) C̃A ≤ C̃B ⇔ Ŝcr(C̃A) ≤ Ŝcr(C̃B).
(ii) If C̃A = (1ei2π, 0, 0), then Ŝcr(C̃A) = 1.
(iii) If C̃A = (0, 1ei2π, 1ei2π), then Ŝcr(C̃A) = 0.
(iv) Ŝcr(C̃A) ∈ [0, 1].

Proof. (i) From the reference [12] we have,
C̃A ≤ C̃B ⇔ pA ≤ pB, qA ≥ qB, rA ≥ rB; uA ≤ uB, vA ≥ vB, wA ≥ wB

⇔ pA ≤ pB, (1− qA) ≤ (1− qB), (1− rA) ≤ (1− rB);
uA ≤ uB, (2π − vA) ≤ (2π − vB), (2π − wA) ≤ (2π − wB).
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⇔ Ŝcr(C̃A) =
1

6
[(pA + (1− qA) + (1− rA)) +

1

2π
(uA + (2π − vA) + (2π − wA))]

≤ 1

6
[(pB + (1− qB) + (1− rB)) +

1

2π
(uB + (2π − vB) + (2π − wB))]

= Ŝcr(C̃B)

(ii) If C̃A = (1ei2π, 0, 0) then, from Equation 8.1 it is obvious that, Ŝcr(C̃A) = 1.

(iii) If C̃A = (0, 1ei2π, 1ei2π) then, from Equation 8.1 it is obvious that, Ŝcr(C̃A) = 0.

(iv) Since, each of pA, qA, rA ∈ [0, 1] and each of uA, vA, wA ∈ [0, 2π], then from the
Equation 8.1 it is obvious that, Ŝcr(C̃A) ∈ [0, 1].

Example 8.2. Let, C̃A = (0.7ei2π, 0.4eiπ, 0.3ei2π) be a complex neutrosophic number over
X . Then, by using Equation 8.1, its score value is,
Ŝcr(C̃A) = 1

6

{
[0.7 + (2− (0.4 + 0.3))] + 1

2π
[2π + (4π − (π + 2π))]

}
= 0.58.

Let, C̃B = (0.2eiπ, 0.5ei2π, 0.7ei2π) be another complex neutrosophic number over X . Then,
by using Equation 8.1, its score value is,
Ŝcr(C̃B) = 1

6

{
[0.2 + (2− (0.5 + 0.7))] + 1

2π
[π + (4π − (2π + 2π))]

}
= 0.25.

8.5 Some operations on complex neutrosophic soft sets
Let, X = {x1, x2, .., xm} be a universal set and E = {e1, e2, .., en} be a set of parameters.
Now, consider two complex neutrosophic soft sets (fC̃N , A) and (gC̃N , B) over X where,
A,B ⊆ E. Then, union operation and intersection operation of (fC̃N , A) and (gC̃N , B) can
be defined as follows:

Definition 8.6. Complex neutrosophic soft union of two complex neutrosophic soft sets
(fC̃N , A) and (gC̃N , B) is denoted by (fC̃N , A)∪̃N(gC̃N , B) = (hC̃N , D) where, A ∪ B = D
and ∀a ∈ D,

hC̃N (a) =


fC̃N (a) if a ∈ A−B
gC̃N (a) if a ∈ B − A
fC̃N (a)∪̃NgC̃N (a) if a ∈ A ∩B

∪̃N is the complex neutrosophic union of fC̃N (a) and gC̃N (a) as defined in Definition 8.2.

• If, ∪̃N is considered as the complex neutrosophic standard union (∪̃maxN ), then the cor-
responding complex neutrosophic soft union is called complex neutrosophic soft stan-
dard union, which can be denoted by, (fC̃N , A)∪̃maxN (gC̃N , B) = (hC̃N , D).
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• If, ∪̃N is considered as the complex neutrosophic algebraic sum (ũN ), then the
corresponding complex neutrosophic soft union is called complex neutrosophic soft
algebraic sum, which can be written as, (fC̃N , A)ũN(gC̃N , B) = (hC̃N , D).

• If, ∪̃N is considered as the complex neutrosophic bold sum (d̃N ), then the
corresponding complex neutrosophic soft union is called complex neutrosophic soft
bold sum which can be written as, (fC̃N , A)d̃N(gC̃N , B) = (hC̃N , D).

Definition 8.7. Complex neutrosophic soft intersection of (fC̃N , A) and (gC̃N , B) is denoted
by, (fC̃N , A)∩̃N(gC̃N , B) = (HC̃N

, D) where, A ∩ B = D and ∀a ∈ D,
HC̃N

(a) = fC̃N (a)∩̃NgC̃N (a).
∩̃N is the complex neutrosophic intersection of fC̃N (a) and gC̃N (a) as defined in

Definition 8.1.

• If, ∩̃N is considered as the complex neutrosophic standard intersection (∩̃minN ), then the
corresponding complex neutrosophic soft intersection is called complex neutrosophic
soft standard intersection, which can be denoted by,
(fC̃N , A)∩̃minN (gC̃N , B) = (HC̃N

, D).

• If, ∩̃N is considered a the complex neutrosophic product (◦̃N ), then the corresponding
complex neutrosophic soft intersection is called complex neutrosophic soft product
which can be denoted by, (fC̃N , A)◦̃N(gC̃N , B) = (HC̃N

, D).

• If, ∩̃N is considered as the complex neutrosophic bold intersection (ẽN ), then the cor-
responding complex neutrosophic soft intersection is called complex neutrosophic soft
bold intersection which can be denoted by, (fC̃N , A)ẽN(gC̃N , B) = (HC̃N

, D).

Example 8.3. Let X = {x1, x2, x3} and E = {e1, e2, e3}. Now assume that, (fC̃N , A) and
(gC̃N , B) be two complex neutrosophic soft sets overX whereA = {e1, e2} andB = {e1, e3}
such that,
(fC̃N , A) = {(e1, ((x1, (0.3e

iπ/2, 0.1eiπ, 0.6ei3π/2)), (x2, (0.6e
i3π/2, 0.5eiπ, 0.4eiπ/2)),

(x3, (0.8e
i2π, 0.3eiπ, 0.2eiπ/2)))), (e2, ((x1, (0.7e

iπ/4, 0.3eiπ, 0.2eiπ)),
(x2, (0.6e

i2π, 0.4eiπ/2, 0.1eiπ)),
(x3, (0.4e

iπ, 0.7ei2π, 0.9ei2π))))} and
(gC̃N , A) = {(e1, ((x1, (0.4e

iπ, 0.3eiπ/2, 0.5ei2π)), (x2, (0.7e
i3π/2, 0.4eiπ/2, 0.2eiπ)),

(x3, (0.7e
i3π/2, 0.4eiπ, 0.5eiπ/4)))), (e3, ((x1, (0.6e

iπ/2, 0.4eiπ, 0.3eiπ/2)),
(x2, (0.5e

iπ, 0.4eiπ/2, 0.3eiπ)), (x3, (0.3e
iπ/2, 0.8ei3π/2, 0.8ei2π))))}. Then,

• (fC̃N , A)∪̃maxN (gC̃N , B) = {(e1, ((x1, (0.4e
iπ, 0.3eiπ, 0.6e2π)),

(x2, (0.7e
i3π/2, 0.5eiπ, 0.4e2π)), (x3, (0.8e

i2π, 0.4eiπ, 0.5eiπ/2)))),
(e2, ((x1, (0.7e

iπ/4, 0.3eiπ, 0.2eiπ)), (x2, (0.6e
i2π, 0.4eiπ/2, 0.1eiπ)),

(x3, (0.4e
iπ, 0.7ei2π, 0.9ei2π)))), (e3, ((x1, (0.6e

iπ/2, 0.4eiπ, 0.3eiπ/2)),
(x2, (0.5e

iπ, 0.4eiπ/2, 0.3eiπ)),
(x3, (0.3e

iπ/2, 0.8ei3π/2, 0.8ei2π))))}.
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• (fC̃N , A)ũN(gC̃N , B) = {(e1, ((x1, (0.5e
i1.25π, 0.37ei1.25π, 0.8e2π)),

(x2, (0.88ei1.88π, 0.7ei1.25π, 0.52ei1.25π)), (x3, (0.9e
i2π, 0.58ei1.5π, 0.6ei1.5π/2)))),

(e2, ((x1, (0.7e
iπ/4, 0.3eiπ, 0.2eiπ)), (x2, (0.6e

i2π, 0.4eiπ/2, 0.1eiπ)),
(x3, (0.4e

iπ, 0.7ei2π, 0.9ei2π)))), (e3, ((x1, (0.6e
iπ/2, 0.4eiπ, 0.3eiπ/2)),

(x2, (0.5e
iπ, 0.4eiπ/2, 0.3eiπ)), (x3, (0.3e

iπ/2, 0.8ei3π/2, 0.8ei2π))))}.

• (fC̃N , A)d̃N(gC̃N , B) = {(e1, ((x1, (0.7e
i3π/2, 0.4ei3π/2, 1e2π)),

(x2, (1e
i2π, 0.9ei3π/2, 0.6ei3π/2)), (x3, (1e

i2π, 0.7ei2π, 0.7ei3π/4)))),
(e2, ((x1, (0.7e

iπ/4, 0.3eiπ, 0.2eiπ)), (x2, (0.6e
i2π, 0.4eiπ/2, 0.1eiπ)),

(x3, (0.4e
iπ, 0.7ei2π, 0.9ei2π)))), (e3, ((x1, (0.6e

iπ/2, 0.4eiπ, 0.3eiπ/2)),
(x2, (0.5e

iπ, 0.4eiπ/2, 0.3eiπ)), (x3, (0.3e
iπ/2, 0.8ei3π/2, 0.8ei2π))))}.

• (fC̃N , A)∩̃minN (gC̃N , B) = {(e1, ((x1, (0.3e
iπ/2, 0.1eiπ/2, 0.5ei3π/2)),

(x2, (0.6e
i3π/2, 0.4eiπ/2, 0.2eπ/2)), (x3, (0.7e

i3π/2, 0.3eiπ, 0.2eiπ/2))))}.

• (fC̃N , A)◦̃N(gC̃N , B) = {(e1, ((x1, (0.12eiπ/4, 0.03eiπ/4, 0.3e3π/2)),

(x2, (0.42ei9π/8, 0.2eiπ/4, 0.08eiπ/4)), (x3, (0.56ei3π/4, 0.12eiπ/2, 0.1eiπ/16))))}.

• (fC̃N , A)ẽN(gC̃N , B) = {(e1, ((x1, (0e
i0, 0ei0, 0.1e3π/2)),

(x2, (0.3e
iπ, 0ei0, 0ei0)), (x3, (0.5e

i3π/2, 0ei0, 0ei0))))}.

Complex neutrosophic soft ideal solution.
Let, X = {x1, x2, .., xm} be a universal set and E = {e1, e2, .., en} be a corresponding
parameter set. Now, consider (fC̃N , E) be a complex neutrosophic soft set over X such that,

(fC̃N , E) =
{

(e1, fC̃N (e1), (e2, fC̃N (e2), .., (en, fC̃N (en)
}

=
{

(e1, {(x1, x11), (x2, x21), .., (xm, xm1)}), (e2, {(x1, x12), (x2, x22), ..,

(xm, xm2)}), .., (en, {(x1, x1n), (x2, x2n), .., (xm, xmn)})
}

where, xsj is the complex neutrosophic valued evaluation of an alternative xs over a
parameter ej .

Definition 8.8. Then, complex neutrosophic soft ideal solution of a CNSS (fC̃N , E) is the
best reference solution (as given in Figure 8.2) which can be defined by taking complex
neutrosophic standard union among the evaluations of all the alternatives with respect to each
of the parameters. Mathematically, it can be denoted by x+ and is defined as,

x+ = {f+

C̃N
(e1), f+

C̃N
(e2), .., f+

C̃N
(en)}

where,

f+

C̃N
(ej) = x1j∪̃maxN x2j∪̃maxN ..∪̃maxN xmj; j = 1, 2, .., n.

f+

C̃N
(ej) is called the complex neutrosophic soft ideal evaluation of a parameter ej and ∪̃maxN

is the complex neutrosophic standard union as defined in Definition 8.2.
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8.6 Decision-making problems based on soft set theory un-

der complex neutrosophic environment.
Decision-making problems have been studied by the researchers under different
environments like, fuzzy soft set [22], intuitionistic fuzzy soft set [105], neutrosophic soft
set [24], etc. Now, in this section, we have proposed two methodologies to solve
decision-making problems under complex neutrosophic soft set theory.

8.6.1 Complex neutrosophic soft decision-making for single decision

maker based problems

Problem description

Let, X = {x1, x2, .., xm} be the universal set and E = {e1, e2, .., en} be the set of
corresponding parameters which are in complex neutrosophic sense. Now, we have assumed
that, (fC̃N , E) be a complex neutrosophic soft set over X such that,

(fC̃N , E) = {(e1, fC̃N (e1)), (e2, fC̃N (e2)), .., (en, fC̃N (en))}
where, fC̃N (ej) = {(x1, x1j), (x2, x2j), .., (xm, xmj)} and xsj = (Tsj, Isj, Fsj) ;
s = 1, 2, ..,m, j = 1, 2, .., n is the complex neutrosophic valued evaluation of an alternative
xs over a parameter ej . Tsj , Isj and Fsj are the complex-valued truth membership degree,
complex-valued indeterminate membership degree and complex-valued false membership
degree such that, Tsj = psje

iusj , Isj = qsje
ivsj , Fsj = rsje

iwsj ; psj, qsj, rsj ∈ [0, 1] with
0 ≤ psj + qsj + rsj ≤ 3 and usj, vsj, wsj ∈ [0, 2π].
Tabular representation of the complex neutrosophic soft set (fC̃N , E) has been given in
Table 8.1.

Table 8.1: Tabular form of a CNSS (fC̃N , E) (in general case)
e1 e2 . . . en

x1 x11 x12 . . . x1n

x2 x21 x22 . . . x2n

. . . . . . .

. . . . . . .

xm xm1 xm2 . . . xmn

In Figure 8.3, graphical representation of a complex neutrosophic number (xsj) has been
given.

• Nature of the parameters in the considered decision-making problem.
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Figure 8.2: Complex neutrosophic soft ideal solution

Figure 8.3: Graphical representation of CNNs
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Molodtsov’s soft set is a parameterized family of subsets of the universal set X . In this set,
any parameterization can be considered to handle real-life problems. For instance, we can
take the parameters with the help of words, sentences, functions, real numbers, etc. However,
not all the parameters come from same environment, therefore, conflicting criteria may exist
in the parameter set. i.e., some of the parameters may be benefit criteria and some of the
parameters may be cost criteria.

So, in a complex neutrosophic soft set based decision-making problem, there may exist
conflicting criteria in the considered parameter set. Then, to deal with the conflicting criteria,
firstly, we have equalized the sense of all the parameters.

Here, we have converted the evaluations of all the alternatives with respect to each of the
cost parameters into benefit sense by taking their complex neutrosophic complement.

• Weights of the considered parameters.

Weights of the parameters play an important role in a decision-making problem. However,
weights of the parameters may or may not be given at the initial stage. Moreover, an
incomplete information about the weights of the parameters may be provided in the
decision-making problem. In such cases, to solve the problems, now, we have to derive the
exact weights of the parameters.

If, W = {W1,W2, ..,Wn} ; Wj ∈ [0, 1] be the associated weights of parameters, then

they should satisfy the condition,
n∑
j=1

Wj = 1.

So, based on these above discussions, our targets are as follows:
(i) To equalize the sense of all the considered parameters associated with the CNSS (fC̃N , E)
to deal with the conflicting criteria.
(ii) To use a normalization process for handling non commensurable parameters.
(iii) To derive the exact weights of the parameters, if the weights of the parameters are
not given or an incomplete information about the weights of the parameters is given in the
decision-making problem.
(iv) Finally, to construct a ranking order the alternatives based on the complex neutrosophic
soft set (fC̃N , E).

Complex neutrosophic soft VIKOR approach for single decision maker based problems

To fulfil the above targets, now we have proposed an algorithm in complex neutrosophic soft
set framework. In this algorithm we have used VIKOR approach ( [124]) to obtain a
compromise optimal solution by testing ‘acceptable advantage’ and ‘acceptable stability’ in
this decision-making problem. This compromise optimal solution would be closest to the
ideal solution. Our proposed approach contains the following steps.
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Algorithm I: Complex neutrosophic soft VIKOR approach for single decision maker
(CNSVISDM-approach).

Step 1. Input the necessary substance.
Input the selected m alternatives (X = {x1, x2, .., xm}) and n corresponding parameters
(E = {e1, e2, .., en}). Input the evaluations of all the alternatives with respect to n
parameters through a complex neutrosophic soft set (fC̃N , E) as given in Table 8.1. If the
weights of the parameters are given in a problem then, input them (W = {W1,W2, ..,Wn})
also.

Step 2. Equalization of the sense of all the parameters for dealing with conflicting criteria.
To deal with the conflicting parameters in a complex neutrosophic soft set based
decision-making problem, we have transformed the evaluations of all the alternatives over
each of the cost parameters into benefit sense to uniform the sense of all the parameters. In
this regard,

(i) First, identify the benefit parameters (with respect to these parameters, large
evaluation of an alternative is better) and cost parameters (with respect to these parameters,
small evaluation of an alternative is better). Let A be the set of benefit parameters and B be
the set of cost parameters such that, A ∪B = E and A ∩B = φ.

(ii) Transform the evaluations of all the alternatives with respect to each of the
parameters of the set B into benefit sense by taking their complement. Mathematically, it
can be defined as follows, ∀ ej ∈ B,

(fC̃N (ej))
c = {(x1, x

c
1j), (x2, x

c
2j), .., (xm, x

c
mj)}

c-denotes the complement of a complex neutrosophic evaluation xsj as given in the Section
8.2.

Step 3. Derivation of the complex neutrosophic soft ideal evaluation of each of the
parameters.
Since our goal is, select the alternative which satisfies all the parameters with maximum
evaluation level therefore, by using Definition 8.8, we have derived the complex
neutrosophic soft ideal evaluation of each of the parameters, denoted by
f+

C̃N
(ej); j = 1, 2, .., n, over the complex neutrosophic soft set (fC̃N , E) as follows:

f+

C̃N
(ej) = x1j∪̃maxN x2j∪̃maxN ..∪̃maxN xmj

Then, from Definition 8.2 it is concluded that,

f+

C̃N
(ej) = x1j∪̃maxN x2j∪̃maxN ..∪̃maxN xmj

=
(
max{p1j, p2j, .., pmj}eimax{u1j ,u2j ,..,umj},

max{q1j, q2j, .., qmj}eimax{v1j ,v2j ,..,vmj},max{r1j, r2j, .., rmj}eimax{w1j ,w2j ,..,wmj})

= (p+
j e

iu+j , q+
j e

iv+j , r+
j e

iw+
j
)
; j = 1, 2, .., n
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Step 4. Determination of the bounded difference between f+

C̃N
(ej) and xsj .

By using Definition 8.3, we have obtained the complex neutrosophic bounded difference of
the evaluation xsj of an alternative xs with respect to a parameter ej from the corresponding
complex neutrosophic soft ideal evaluation f+

C̃N
(ej).

Mathematically, the resultant value is denoted by, d	sj and is defined as,
d	sj = (f+

C̃N
(ej)	̃Nxsj) such that,

d	sj = (f+

C̃N
(ej)	̃Nxsj)

= (max(0, p+
j − psj)eimax(0,u+j −usj),max(0, q+

j − qsj)eimax(0,v+j −vsj),

max(0, r+
j − rsj)eimax(0,w+

j −wsj))

= (p̌sje
iǔsj , q̌sje

iv̌sj , řsje
iw̌sj)

The resultant soft set is called complex neutrosophic bounded difference soft set. It is denoted
by, (f	

C̃N
, E) and its tabular form has been given in Table 8.2.

Table 8.2: Complex neutrosophic bounded difference soft set (f	
C̃N
, E)

e1 e2 . . . en

x1 d	11 d	12 . . . d	1n

x2 d	21 d	22 . . . d	2n

. . . . . . .

. . . . . . .

xm d	m1 d	m2 . . . d	mn

Step 5. Derivation of score value of each of the entries of the soft set (f	
C̃N
, E) (given in Table

8.2).
Now, by using our proposed score function of a complex neutrosophic number (Definition
8.5), we have deduced the score value (Ŝcr) of each of the entries
d	sj = (p̌sje

iǔsj , q̌sje
iv̌sj , řsje

iw̌sj) in the complex neutrosophic bounded difference soft set
(f	
C̃N
, E) as follows:

Ŝcr(d
	
sj) =

1

6

{
[p̌sj + (2− (q̌sj + řsj))] +

1

2π
[ǔsj + (4π − (v̌sj + w̌sj))]

}
These score values have been presented in Table 8.3 which is named as score valued matrix.

Step 6. Normalization process to deal with non commensurable parameters.
In a complex neutrosophic soft set based decision-making problem, there may exist non
commensurable criterion in the parameter set. Then, to deal with the non commensurable
data, we have used the linear max normalization technique (given in Section 8.2) to make all
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Table 8.3: Tabular form of the score valued matrix (Ŝcr(d
	
sj))m×n

e1 e2 . . . en

x1 Ŝcr(d
	
11) Ŝcr(d

	
12) . . . Ŝcr(d

	
1n)

x2 Ŝcr(d
	
21) Ŝcr(d

	
22) . . . Ŝcr(d

	
2n)

. . . . . . .

. . . . . . .

xm Ŝcr(d
	
m1) Ŝcr(d

	
m2) . . . Ŝcr(d

	
mn)

the parameters unit less.

6.1 Firstly, we have derived the maximum score value over all the alternatives with respect to
a parameter ej . Mathematically it is denoted by, Ŝ+

cr(d
	
j ) and is defined as follows:

Ŝ+
cr(d

	
j ) = maxms=1Ŝcr(d

	
sj)

6.2 Then, we have applied the linear max normalization technique to normalize an entry
Ŝcr(d

	
sj) associated with the Table 8.3 as follows:

φsj =
Ŝcr(d

	
sj)

Ŝ+
cr(d

	
j )

(8.2)

So, by using the above equation, each of the evaluations φsj; s = 1, 2, ..,m; j = 1, 2, .., n
over each of the parameters now becomes unit less.

Step 7. Determination of the group utility value of an alternative xs (Utility measure).
The group utility value of an alternative xs is denoted by, ŜWcr (xs) and is derived by adding
the weighted values φs1, φs2, .., φsn. Mathematically, it is defined as follows,

ŜWcr (xs) =
n∑
j=1

Wjφsj; s = 1, 2, ..,m; j = 1, 2, .., n (8.3)

where, Wj is the weight of the parameter ej and φsj the normalized bounded difference of
an evaluation xsj from the corresponding ideal evaluation f+

C̃N
(ej) in terms of score value. If

the weights of the parameters are not given or an incomplete information about the weights
of the parameters is given then, we have to determine the exact weights of the parameters by
using Subsection 8.6.2.

So, from Equation 8.3 it is concluded that, the alternative xs which has smallest value of
ŜWcr is best.

Step 8. Determination of the individual regret value of an alternative xs (Regret measure).
The individual regret of an alternative xs is denoted by, Ŝmaxcr and is derived by taking the
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maximum weighted value over all the weighted values of φs1, φs2, .., φsn. Mathematically, it
is defined as follows,

Ŝmaxcr (xs) = max
j
{Wjφsj}; s = 1, 2, ..,m; j = 1, 2, .., n (8.4)

Step 9. Derivation of the compromising index Ĉ(xs) of an alternative xs.
The compromising index of an alternative xs over all the parameters can be defined by the
following equation:

Ĉ(xs) = θ
ŜWcr (xs)− ŜWcr (xs)

ŜWcr (xs)− ŜWcr (xs)
+ (1− θ) Ŝ

max
cr (xs)− Ŝmaxcr (xs)

Ŝmaxcr (xs)− Ŝmaxcr (xs)
(8.5)

where, ŜWcr (xs) = min
s
ŜWcr (xs), ŜWcr (xs) = max

s
ŜWcr (xs), Ŝmaxcr (xs) = min

s
Ŝmaxcr (xs),

Ŝmaxcr (xs) = max
s
Ŝmaxcr (xs).

Here, the parameter θ ∈ [0, 1] indicates the weight of the strategy of maximum group of
utility and (1− θ) indicates the weight of the strategy of minimum individual regret.

Step 10. Ranking of the alternatives based on the compromising index
Construct the ranking order of m alternatives based on the descending order of their utility
measure (ŜWcr ), regret measure (Ŝmaxcr ) and compromising index (Ĉ). Therefore, we will get
three ranking results.

Assume that, the alternative xL has minimum compromising index value among m
alternatives. Then, the alternative xL will be a compromise optimal solution if the following
two conditions are satisfied:

• Condition 1. Acceptable advantage:
Ĉ(x

′
L)− Ĉ(xL) ≥ DQ (a threshold value) = 1

m−1
,

where, xL′ is the alternative placed at the second position in ranking order of the alter-
natives based on compromising index and m is the number of alternatives.

• Condition 2. Acceptable stability:
The alternative xL is the best solution based on the ranking order of utility measure
(ŜWcr ) and regret measure (Ŝmaxcr ).

Now, if any one of the above two conditions is not satisfied then, we will get a set of
compromise optimal solutions as follows:

• If, Condition 1 is not satisfied then, we will take the first m′ alternatives as a
compromise optimal solutions for this decision problem for maximum number of m′ ,
where the number m′ will be derived by the following equation:

Ĉ(xm′ )− Ĉ(xL) < 1
m−1

• If, Condition 2 is not satisfied then, xL and xL′ both will be the compromise optimal
solutions for this decision-making problem.
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8.6.2 Determination of the weights of the parameters
Weights of the parameters play an important role in a decision-making problem. However in
a problem, weights of the parameters may or may not be given. Moreover, an incomplete
information about the weights of the parameters may be given in the problem. So, when
exact weights of the parameters are not given in a problem initially, then we have to
determine the exact weights of the parameters.
Let, W = {W1,W2, ..,Wn} be the weighs parameters where, each

Wj ∈ [0, 1]; j = 1, 2, .., n and
n∑
j=1

Wj = 1.

Definition 8.9. The mean potentiality of a parameter ej associated with the complex
neutrosophic soft set (fC̃N , E) (after equalization) is derived by taking arithmetic mean
aggregation (as given in Definition 8.4) of the evaluations of all the alternatives with respect
to the parameter ej . Mathematically, it is denoted by mej and is defined as follows:

mej = (x1j⊕̃
AM
N x2j⊕̃

AM
N ..⊕̃AMN xmj) (8.6)

Then, from Definition 8.4 it is obtained that,

mej =
(
x1j⊕̃

AM
N x2j⊕̃

AM
N ..⊕̃AMN xmj

)
=
( 1

m
(p1j + p2j + ..+ pmj)e

i 1
m

(u1j+u2j+..+umj),

1

m
(q1j + q2j + ..+ qmj)e

i 1
m

(v1j+v2j+..+vmj),

1

m
(r1j + r2j + ..+ rmj)e

i 1
m

(w1j+w2j+..+wmj)
)

Now to evaluate the exact weights of the parameters, we have followed the following steps.
6.2.1 After equalization of all the parameters (by using Step 2 of Algorithm I) associated
with the CNSS (fC̃N , E), determine the mean potentiality of each of the parameters by using
Equation 8.6.

6.2.2 Evaluate the complex neutrosophic distance measure (dsj) between the evaluation xsj
of an alternative xs; s = 1, 2, ..,m with respect to the parameter ej and the mean potentiality
(mej ) of the parameter ej as follows,

dsj = d̃CN(mej , xsj)

where, d̃CN is the complex neutrosophic distance measure as given in Section 8.2.

6.2.3 After that, derive the total complex neutrosophic distance of all the alternatives with
respect to the parameter ej . Mathematically, it is denoted by, d̃ej and is defined as,

d̃ej =
m∑
s=1

dsj =
m∑
s=1

d̃CN(mej , xsj) (8.7)
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6.2.4 Then, the weighted complex neutrosophic distance function of this complex
neutrosophic soft set based decision-making problem is denoted by, D̃(W ) and is
constructed as follows.

D̃(W ) =
n∑
j=1

d̃ejWj =
n∑
j=1

m∑
s=1

dsjWj =
n∑
j=1

m∑
s=1

d̃CN(mej , xsj)Wj

Case-I. When weights of the parameters are incompletely known:
Based on the reference [175], the possible types of incomplete information about the
weights of the parameters are as follows. For j 6= j

′ ,
(i) Weak ranking: P1 = {Wj ≥ Wj′};
(ii) Strict ranking: P2 = {Wj −Wj′ ≥ βj′ , βj′ ≥ 0};
(iii) Ranking of differences: P3 = {Wj −Wj′ ≥ Wk −Wk′ , j

′ 6= k 6= k
′};

(iv) Ranking with multiples: P4 = {Wj ≥ βj′Wj′ , (0 ≤ βj′ ≤ 1)};
(v) Interval forms: P5 = {βj ≤ Wj ≤ βj + εj, (0 ≤ βj ≤ βj + εj ≤ 1)}.

Let P be the set of these five possible categories of information about the weights of the
parameters such that, P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5.

Now, we have established an optimization model to derive the exact weights of the
parameters as following:

max D̃(W ) =
n∑
j=1

m∑
s=1

d̃CN(mej , xsj)Wj

s.t.,W ∈ P ;

0 ≤ Wj ≤ 1 and
n∑
j=1

Wj = 1

 (8.8)

By solving the above equation, we will obtain the exact weights of the parameters.

Case-II. When weights of the parameters are completely unknown:
If, the weights are completely unknown in a decision-making problem, then the weights of
the parameters can be derived as follows:

Wj =
d̃ej
n∑
j=1

d̃ej

=

m∑
s=1

d̃CN(mej , xsj)

n∑
j=1

m∑
s=1

d̃CN(mej , xsj)
(8.9)

199



CHAPTER 8. A SOFT SET BASED VIKOR APPROACH FOR SOME
DECISION-MAKING PROBLEMS UNDER COMPLEX NEUTROSOPHIC

ENVIRONMENT

8.6.3 Complex neutrosophic soft decision-making for multiple decision

makers based problems

Problem description

Let us consider that, X = {x1, x2, .., xm} be a set of m alternatives and E = {e1, e2, .., en}
be a set of n corresponding parameters. Now assume that, k decision makers,
D = {d1, d2, .., dk}, have been assigned to select the best alternative from m alternatives
over n parameters. It is considered that, all the decision makers have given their opinions
about the alternatives in terms of complex neutrosophic valued evaluations. So, we get k
complex neutrosophic soft sets, (fC̃N1

, E), (fC̃N2
, E), .., (fC̃Nk

, E), where,
(fC̃Nl

, E) = {(e1, fC̃Nl
(e1)), (e2, fC̃Nl

(e2)), .., (en, fC̃Nl
(en))}

= {(e1, ((x1, x(11,l)), (x2, x(21,l)), .., (xm, x(m1,l)))), (e2, ((x1, x(12,l)), (x2, x(22,l)), ..,
(xm, x(m2,l)))), .., (en, ((x1, x(1n,l)), (x2, x(2n,l)), .., (xm, x(mn,l))))}.

Here, x(sj,l) = (p(sj,l)e
iu(sj,l) , q(sj,l)e

iv(sj,l) , r(sj,l)e
iw(sj,l)) represents the complex

neutrosophic valued evaluation of an alternative xs; s = 1, 2, ..,m over a parameter
ej; j = 1, 2, .., n given by the decision maker dl; l = 1, 2, .., k. Tabular form of k CNSS has
been given in Table 8.4.

Table 8.4: Tabular form of k complex neutrosophic soft sets
(fC̃N1

, E) (fC̃N2
, E)

e1 e2 . . . en e1 e2 . . . en

x1 x(11,1) x(12,1) . . . x(1n,1) x(11,2) x(12,2) . . . x(1n,2)

x2 x(21,1) x(22,1) . . . x(2n,1) x(21,2) x(22,2) . . . x(2n,2)

. . . . . .

xm x(m1,1) x(m2,1) . . . x(mn,1) x(m1,2) x(m2,2) . . . x(mn,2)

(fC̃Nk
, E)

e1 e2 . . . en

.. x(11,k) x(12,k) . . . x(1n,k)

.. p(21,k) x(22,k) . . . x(2n,k)

.. . . .

.. x(m1,k) x(m2,k) . . . x(mn,k)

• Nature of the considered parameters.

In a complex neutrosophic soft set based group decision-making problem, conflicting
parameter may exist in the considered parameter set E. Therefore, we will equalize the
sense of all the parameters by transforming the evaluations of all the alternatives over each
of the cost parameter into benefit sense by using complex neutrosophic complement.
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• Weights of the parameters.

In this group decision-making problem, weights of the parameters may or may not be given
initially in the problem. Even sometimes, the information about the weights of the
parameters may be incomplete. So, when the weights of the parameters are completely
unknown or incompletely known in a problem, then we will derive the weights of the
parameters.

If, W = {W1,W2, ..,Wn}; 0 ≤ Wj ≤ 1 be the weights of the parameters, then,
n∑
j=1

Wj = 1.

Now, based on the above discussion, our goals are as follows:
(i) Equalize the sense of the all considered parameters for handling the conflicting criteria.
(ii) Construct a resultant CNSS (FC̃N , E) from k CNSSs (fC̃Nl

, E); l = 1, 2, .., k.
(iii) Use a normalization process for handling non commensurable parameters.
(iv) Derive the exact weights of the parameters if they are completely unknown or
incompletely known.
(v) Ranking the alternatives based on the opinions of all the k decision makers.

Complex neutrosophic soft VIKOR approach for multiple decision maker based prob-

lems

In this section, we have provided a decision-making approach to get a synchronized solution
from this complex netrosophic soft set based group decision-making problem by using
VIKOR method.

Algorithm II: Complex neutrosophic soft VIKOR approach for multiple decision
makers (CNSVIMDM-approach).

Step 1. Input the necessary substance.
Input m alternatives (X = {x1, x2, .., xm}), n parameters (E = {e1, e2, .., en}) and k
complex neutrosophic soft sets (fC̃N1

, E), (fC̃N2
, E), .., (fC̃Nk

, E) as given in Table 8.4. If,
the weights of the parameters are given initially in the problem then input them
(W = {W1,W2, ..Wn}) also.

Step 2. Equalization of the sense of all the parameters for handling conflicting criteria.
Firstly, we have recognized the benefit parameters and cost parameters in the parameter set
E. Suppose, A is the set of benefit parameters and B be the set cost parameters such that,
A∪B = E and A∩B = φ. Then, we have transformed the evaluations of all the alternatives
with respect to each of the cost parameters into benefit sense by using complex neutrosophic
complement as follows:

∀l = 1, 2, .., k , fC̃Nl
(ej) = {(x1, x

c
(1j,l)), (x2, x

c
(2j,l)), .., (xm, x

c
(mj,l))}; ∀ej ∈ B
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Step 3. Construction a resultant complex neutrosophic soft set (FC̃N , E).
By using complex neutrosophic soft intersection, we have constructed a resultant complex
neutrosophic soft set (FC̃N , E) from k complex neutrosophic soft sets
(fC̃N1

, E), (fC̃N2
, E), .., (fC̃Nk

, E) as follows,

(FC̃N , E) = (fC̃N1
, E)∩̃N(fC̃N2

, E)∩̃N ..∩̃N(fC̃Nk
, E)

Then, from Definition 8.7, it is concluded that, ∀j = 1, 2, .., n

FC̃N (ej) = fC̃N1
(ej)∩̃NfC̃N2

(ej)∩̃N ..∩̃NfC̃Nk (ej)

= {x1/(x(1j,1)∩̃Nx(1j,2)∩̃N ..∩̃Nx(1j,k)), x2/(x(2j,1)∩̃Nx(2j,2)∩̃N ..∩̃Nx(2j,k)), ..,

xm/(x(mj,1)∩̃Nx(mj,2)∩̃N ..∩̃Nx(mj,k))}
= {x1/u1j, x2/u2j, .., xm/umj}

where, ∩̃N is the complex neutrosophic intersection and
usj = (P̄sje

iŪsj , Q̄sje
iV̄sj , R̄sje

iW̄sj); s = 1, 2, ..,m.

Step 4. Derivation of the complex neutrosophic soft ideal evaluation of each of the
parameters.
Complex neutrosophic soft ideal evaluation F+

C̃N
(ej) of a parameter ej over the resultant

complex neutrosophic soft set (FC̃N , E) has been defined as follows:

F+

C̃N
(ej) = u1j∪̃maxN u2j∪̃maxN ..∪̃maxN umj = (max(P̄1j, P̄2j, .., P̄mj)e

imax(Ū1j ,Ū2j ,..,Ūmj),

max(Q̄1j, Q̄2j, .., Q̄mj)e
imax(V̄1j ,V̄2j ,..,V̄mj),

max(R̄1j, R̄2j, .., R̄mj)e
imax(W̄1j ,W̄2j ,..,W̄mj)) = (P+

j e
iU+
j , Q+

j e
iV +
j , R+

j e
iW+

j )

Step 5. Determination of the bounded difference of usj form F+

C̃N
(ej).

We have evaluated the complex neutrosophic bounded difference (d̄	sj) of the evaluation usj
of an alternative xs over the parameter ej from the associated ideal evaluation F+

C̃N
(ej) over

the soft set (FC̃N , E) as follows:

d̄	sj = F+

C̃N
(ej)	̃Nusj = (max(0, P+

j − P̄sj)eimax(0,U+
j −Ūsj),

max(0, Q+
j − Q̄sj)e

imax(0,V +
j −V̄sj),max(0, R+

j − R̄sj)e
imax(0,W+

j −W̄sj))

= (P̌sje
iǓsj , Q̌sje

iV̌sj , Řsje
iW̌sj)

The resultant Complex neutrosophic bounded difference soft set is denoted by,
(F	

C̃N
, E) = (d̄	sj)m×n.

Step 6. Evaluation of the score value of each of the entries in the soft set (F	
C̃N
, E).

We have derived the score value (Ŝcr) of each of the entries d̄	sj in the soft set (F	
C̃N
, E). The

202



8.6. DECISION-MAKING PROBLEMS BASED ON SOFT SET THEORY UNDER
COMPLEX NEUTROSOPHIC ENVIRONMENT.

score values are presented in the score valued matrix (Ŝcr(d̄
	
sj))m×n.

Step 7. Normalization process to deal with non commensurable parameters.
Firstly, we have determined the maximum score value (Ŝ+

cr(d̄
	
j )) over all the alternatives with

respect to a parameter ej associated with the matrix (Ŝcr(d̄
	
sj))m×n as,

Ŝ+
cr(d̄

	
j ) = maxms=1Ŝcr(d̄

	
sj).

Then, we have normalized the entry Ŝcr(d̄	sj) in this matrix by the following:

φ̄sj =
Ŝcr(d̄

	
sj)

Ŝ+
cr(d̄

	
j )

Step 8. Evaluation of the group utility value of an alternative xs (Utility measure).
The group utility value (ŜWcr (xs)) of an alternative xs is derived by adding the weighted values
of φ̄s1, φ̄s2,..,φ̄sn over all the parameters as follows:

ŜWcr (xs) =
n∑
j=1

Wjφ̄sj (8.10)

where, Wj is the weight of the parameter ej . If Wj is not given in the problem, then
determine it by using Subsection 8.6.2 on the resultant complex neutrosophic soft set
(FC̃N , E).

Step 9. Evaluation of the individual regret score of an alternative xs (Regret measure).
The individual regret (Ŝmaxcr (xs)) of an alternative xs is derived as follows:

Ŝmaxcr (xs) = max
j
{Wjφ̄sj} (8.11)

Step 10. Derivation of the compromising index Ĉ(xs) of an alternative xs.
The compromising index of an alternative over all the parameters is evaluated by the follow-
ing equation,

Ĉ(xs) = θ
ŜWcr (xs)− ŜWcr (xs)

ŜWcr (xs)− ŜWcr (xs)
+ (1− θ) Ŝ

max
cr (xs)− Ŝmaxcr (xs)

Ŝmaxcr (xs)− Ŝmaxcr (xs)
(8.12)

ŜWcr (xs) = min
s
ŜWcr (xs), ŜWcr (xs) = max

s
ŜWcr (xs), Ŝmaxcr (xs) = min

s
Ŝmaxcr (xs),

Ŝmaxcr (xs) = max
s
Ŝmaxcr (xs)

where, the parameter θ ∈ [0, 1] indicates the weight of the strategy of maximum group of
utility.

Step 11. Determination of a compromise optimal solution.
Now, we have obtained a compromise optimal alternative by using Step 10 of Algorithm I.
(CNSVISDM-approach).
Flowchart of our proposed algorithm has been given in Figure 8.4.
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Figure 8.4: Flowchart of our proposed approach
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8.7 Case study

8.7.1 An application of CNSVISDM-approach in manager selection of

a company

At the present era, the number of competitors of a company is increasing rapidly in global
market. Therefore, to preserve its position in global market and to increase its economic
environment, proper manager selection is an important task to a company. Therefore, in this
section, we have solved a manager selection problem of a company with the help of our
proposed Algorithm I.

Example 8.4. Now consider that, four candidates have come to give an interview in the
manager post of a company. The corresponding parameters over these four candidates are,
{engineering background knowledge, ability in budge managing,
ability to listening and understanding the customer′s comment, realiability}.

Now if a decision maker evaluates the satisfaction of the parameter ‘engineering
background knowledge’ over a candidate, then, the only information about the engineering
result of the candidate may not be sufficient for best manager selection. Because, in that
case, additionally, the information about the ‘technical knowledge’ of the candidate is also
necessary and should be known to the decision maker. So, these two information
‘engineering background knowledge’ and ‘technical knowledge’ should be considered
together. Now, if we will use complex neutrosophic environment, then we can handle this
problem by taking ‘engineering background knowledge’ as the amplitude term and
‘technical knowledge’ as the phase term in the evaluation of a candidate over the parameter
‘engineering background knowledge’. Again, for the parameter ‘ability in budget
managing’, the information about the ‘supervising responsibility’ of a candidate is a
necessary information. Therefore, here we have taken ‘ability in budget managing’ as the
amplitude term and ‘supervising responsibility’ as the phase term in the evaluation of a
candidate over the parameter ‘ability in budget managing’. Similarly, for the parameter
‘ability to listening and understanding the customer’s comment’, we have taken the
information ‘good behaving ability to the others’ additionally. Then, ‘ability to listening and
understanding the customer’s comment’ has been considered as the amplitude term and
’good behaving ability to the others’ has been considered as the phase term. Lastly, for the
parameter ‘reliability’, the information about the ‘political sensitivity’ has been considered
as the phase term where, the information about the ‘reliability’ of a candidate has been
considered as the amplitude term.

Now, assume that, X = {C1, C2, C3, C4} be the set of four candidates as the initial
universal set and E = {Engineering background knowledge (e1), Ability in budge
managing (e2), Ability to listening and understanding customer′s comment (e3),
Realiability (e4)} be the set of corresponding parameters of the elements of X . The
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Figure 8.5: Modeling framework of case study 8.7.1

evaluations of the four candidates over these four parameters have been given in a CNSS
(fC̃N , E) (Table 8.5).

Table 8.5: CNSS (fC̃N , E) (Example 8.4)
e1 e2 e3

C1 (0.3eiπ/2, 0.2eiπ/2, 0.7eiπ/2) (0.8ei2π/3, 0.3ei2π/3, 0.2ei2π/3) (0.2eiπ/2, 0.1eiπ/2, 0.7eiπ/2)

C2 (0.9eiπ , 0.2eiπ , 0.1eiπ) (0.2eiπ/3, 0.3eiπ/3, 0.9eiπ/3) (0.1eiπ/6, 0.4eiπ/6, 0.9eiπ/6)

C3 (0.6ei2π/3, 0.3ei2π/3, 0.5ei2π/3) (0.3eiπ/2, 0.1eiπ/2, 0.8eiπ/2) (0.1eiπ/4, 0.5eiπ/4, 0.7eiπ/4)

C4 (0.2eiπ/2, 0.6eiπ/2, 0.8eiπ/2) (0.6ei3π/4, 0.4ei3π/4, 0.3ei3π/4) (0.4ei2π/3, 0.3ei2π/3, 0.7ei2π/3)

e4

C1 (0.8eiπ/3, 0.1eiπ/3, 0.2eiπ/3)

C2 (0.3eiπ/2, 0.6eiπ/2, 0.7eiπ/2)

C3 (0.1ei2π , 0.5ei2π , 0.7ei2π)

C4 (0.2eiπ/2, 0.3eiπ/2, 0.4eiπ/2)

Now the problem is ‘to select the best candidate for the manager post who satisfies all the
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considered parameters with maximum evaluation level’.
In Figure 8.5, graphical framework of this case study has been expressed.

Solution:
We have solved this manager selection problem by using our proposed Algorithm I.
Step 1,2. The corresponding CNSS (fC̃N , E) has been given in Table 8.5.

In this decision problem, all the considering parameters are benefitted parameters.
Therefore, equalization process is not needed here.
Step 3. Complex neutrosophic soft ideal evaluation of each of the parameters over the
CNSS (fC̃N , E) is as follows:
f+

C̃N
(e1) = (0.9eiπ, 0.6eiπ, 0.8eiπ); f+

C̃N
(e2) = (0.8ei3π/4, 0.4ei3π/4, 0.9ei3π/4);

f+

C̃N
(e3) = (0.4ei2π/3, 0.5ei2π/3, 0.9ei2π/3); f+

C̃N
(e4) = (0.8ei2π, 0.6ei2π, 0.7ei2π).

Step 4. The bounded difference (d	sj) of each of the evaluations of the alternatives with
respect to a parameter ej from the associated complex neutrosophic soft ideal evaluation
f+

C̃N
(ej) is given in the complex neutrosophic bounded difference soft set (f	

C̃N
, E) (Table

8.6).

Table 8.6: Complex neutrosophic bounded difference soft set (f	
C̃N
, E) (Example 8.4)

e1 e2 e3

C1 (0.6eiπ/2, 0.4eiπ/2, 0.1eiπ/2) (0eiπ/12, 0.1eiπ/12, 0.7eiπ/12) (0.2eiπ/6, 0.4eiπ/6, 0.2eiπ/6)

C2 (0ei0, 0.2ei0, 0.7ei0) (0.6ei5π/12, 0.1ei5π/12, 0ei5π/12) (0.3eiπ/2, 0.1eiπ/2, 0eiπ/2)

C3 (0.3eiπ/3, 0.3eiπ/3, 0.3eiπ/3) (0.5eiπ/4, 0.3eiπ/4, 0.1eiπ/4) (0.3ei5π/12, 0ei5π/12, 0.2ei5π/12)

C4 (0.7eiπ/2, 0eiπ/2, 0eiπ/2) (0.2ei0, 0ei0, 0.6ei0) (0ei0, 0.2ei0, 0.2ei0)

e4

C1 (0ei5π/3, 0.5ei5π/3, 0.5ei5π/3)

C2 (0.5ei3π/2, 0ei3π/2, 0ei3π/2)

C3 (0.7ei0, 0.1ei0, 0ei0)

C4 (0.6ei3π/2, 0.3ei3π/2, 0.3ei3π/2)

Step 5. By using Definition 8.5, the score value of each of the entries in the complex
neutrosophic bounded difference soft set (f	

C̃N
, E) (given in Table 8.6) has been given in

Table 8.7.
Step 6. Normalization process.
The maximum score value with respect to each of the parameters is s follows:
Ŝ+
cr(d

	
1 ) = 0.74; Ŝ+

cr(d
	
2 ) = 0.72; Ŝ+

cr(d
	
3 ) = 0.66; Ŝ+

cr(d
	
4 ) = 0.77.

Then, by using Equation 8.2, the normalized value of each of the entries in the score valued
matrix has been given in Table 8.8.

Step 7. Determination of the weights of the parameters.
Since, in this problem, weights of the parameters are completely unknown, therefore, we
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Table 8.7: Score valued matrix

(Example 8.4)
e1 e2 e3 e4

C1 0.64 0.53 0.59 0.36

C2 0.52 0.71 0.66 0.62

C3 0.59 0.66 0.65 0.77

C4 0.74 0.60 0.60 0.54

Table 8.8: Normalized score valued matrix

(Example 8.4)
e1 e2 e3 e4

C1 0.86 0.75 0.89 0.47

C2 0.70 1 1 0.80

C3 0.79 0.93 0.98 1

C4 1 0.86 0.91 0.70

have obtained the exact weights of the parameters by using subsection 8.6.2.
7.1 By using Definition 8.9, the mean potentiality of each of the parameters is as follows:
me1 = (0.5ei2π/3, 0.375ei2π/3, 0.525ei2π/3); me2 = (0.475ei9π/16, 0.275ei9π/16, 0.55ei9π/16);
me3 = (0.2ei19π/48, 0.375ei19π/48, 0.75ei19π/48); me4 = (0.35ei5π/6, 0.375ei5π/6, 0.5ei5π/6).
7.2 Then the complex neutrosophic distance (dsj) of the evaluation (xsj) of an alternative
with respect to the parameter ej and its corresponding mean potentiality mej has given in
Table 8.9.

Table 8.9: Tabular form of the distance values (Example 8.4)
e1 e2 e3 e4

C1 0.2 0.35 0.275 0.425

C2 0.425 0.35 0.15 0.225

C3 0.1 0.25 0.125 0.58

C4 0.3 0.25 0.2 0.167

7.3 Now, the total complex neutrosophic distance of all the alternatives from the
corresponding mean potentiality mej associated with the parameter ej is as follows:
d̃e1 = 1.02; d̃e2 = 1.2; d̃e3 = 0.75; d̃e4 = 1.4.
7.4 Now, By using Equation 8.9, the weights of the parameters are as following,
W1 = 0.2; W2 = 0.3; W3 = 0.2; W4 = 0.3.
Step 8. Then, by using Equation 8.3, group utility values of the alternatives are as follows:
ŜWcr (C1) = 0.716; ŜWcr (C2) = 0.88; ŜWcr (C3) = 0.933; ŜWcr (C4) = 0.85.
Step 8. Then, By using Equation 8.4, individual regret values of the alternatives are as
follows:
Ŝmaxcr (C1) = 0.225; Ŝmaxcr (C2) = 0.3; Ŝmaxcr (C3) = 0.3; Ŝmaxcr (C4) = 0.258.
Step 9. Then, by utilizing Equation 8.5, the compromising index of the alternatives are,
Ĉ(C1) = 0; Ĉ(C2) = 0.88; Ĉ(C3) = 1; Ĉ(C4) = 0.53. Here, we have taken θ = 0.5
Step 10. Ranking of the alternatives:
Now, based on ŜWcr , the ranking order is, C1 > C4 > C2 > C3,
based on Ŝmaxcr , the ranking order is, C1 > C4 > C2 = C3 and based on Ĉ, the order is,
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C1 > C4 > C2 > C3.
Condition 1. Again, Condition 1 satisfies truly since,
Ĉ(C1)− Ĉ(C4) = 0.53− 0 = 0.53 > 1

4−1
= 0.33.

Condition 2. Condition 2 also satisfies truly since, C1 is the best each of the Ĉ, ŜWcr and
Ŝmaxcr .

Therefore according to our algorithm it is concluded that, the alternative C1 is a
compromise optimal solution for this decision problem.
Hence, the candidate C1 is best for the manager post of this company.

8.7.2 An application of CNSVISDM-approach in sustainable manufac-

turing material selection of an automotive industry

In today’s life, sustainable manufacturing in an automotive industry gains more attention
because of the essentiality of balancing social, environmental and economic impacts so that,
the development of the industry does not harmful to the society or environment. Now, we
have used our proposed complex neutrosophic soft VIKOR approach to select the best
sustainable automobile manufacturing material alternative in an automotive industry.

Example 8.5. Based on the reference [152], we have considered four automobile
manufacturing material alternatives such as, {ferrous metal (iron or steel), organic
composite, plastics, aluminum} and three corresponding parameters including,
{environmental impact, economic impact, social impact}. Now, if the decision maker
gives his/her concentration only on the ‘greenhouse gas emission’ of a manufacturing
material alternative over the parameter ‘environmental impact’, then this information is not
sufficient to select the best sustainable manufacturing material alternative, because
additionally, the information about the ‘energy consumption level’ associated with the
parameter ‘environmental impact’ is also necessary for selecting the best sustainable
manufacturing material. Therefore, by using complex neutrosophic environment, we have
taken these two information ‘greenhouse gas emission’ and ‘energy consumption level’
together to evaluate the four manufacturing materials over this parameter ‘environmental
impact’ where,‘greenhouse gas emission’ has been considered as the amplitude term and
‘energy consumption level’ has been considered as the phase term. Similarly, for the
parameter ‘economic impact’, we have taken two information together such as, ‘product
cost’ and ‘maintenance cost’ where, ‘product cost’ has been considered as the amplitude
term and ‘maintenance cost’ has been considered as the phase term. Lastly, for the
parameter ‘social impact’, we have taken two information together such as, ‘health status of
adjacent peoples’ and ‘safety of the adjacent peoples’, where, ‘health status of adjacent
peoples’ has been taken as amplitude term and ‘safety of adjacent peoples’ has been taken as
the phase term.

209



CHAPTER 8. A SOFT SET BASED VIKOR APPROACH FOR SOME
DECISION-MAKING PROBLEMS UNDER COMPLEX NEUTROSOPHIC

ENVIRONMENT

Now let, X = {M1 (ferrous metal), M2 (organic composite), M3 (plastics),
M4 (aluminum)} be the initial universal set and E = {e1 (environmental impact),
e2 (economic impact), e3 (social impact)} be the set of parameters. The associated
complex neutrosophic soft set, which represents the evaluations of the four alternatives over
the three parameters, has been given in Table 8.10.

Table 8.10: CNSS (fC̃N , E) (Example 8.5)
e1 e2 e3

M1 (0.7ei3π/2, 0.8ei3π/2, 0.3ei3π/2) (0.2ei4π/3, 0.7ei4π/3, 0.8ei4π/3) (0.2eiπ/2, 0.1eiπ/2, 0.7eiπ/2)

M2 (0.1eiπ , 0.8eiπ , 0.9eiπ) (0.9ei5π/3, 0.7ei5π/3, 0.2ei5π/3) (0.1eiπ/6, 0.4eiπ/6, 0.9eiπ/6)

M3 (0.5eiπ/3, 0.7eiπ/3, 0.6eiπ/3) (0.8ei3π/2, 0.9ei3π/2, 0.3ei3π/2) (0.1eiπ/4, 0.5eiπ/4, 0.7eiπ/4)

M4 (0.8ei3π/2, 0.6ei3π/2, 0.2ei3π/2) (0.3ei5π/4, 0.6ei5π/4, 0.6ei5π/4) (0.4ei2π/3, 0.3ei2π/3, 0.7ei2π/3)

Now, consider that, the information about the weights of the parameters is incompletely
known.
If, W = {W1,W2,W3} be the weights of the three parameters , then the information is,
P = {W1 ≥ 0.4; 0.1 ≤ W2 ≤ 0.9; W2 −W3 < 0.3; W3 ≥ 0.2}.

Now, our problem is to select the best sustainable manufacturing material alternative
over the three considered parameters.
Solution: Now, we have solved this problem by using our proposed Algorithm I.
Step 1. The corresponding complex neutrosophic soft set has been given in Table 8.10.
Step 2. Here, ‘environmental impact’ and ‘economic impact’ are two cost parameters,
because over these two parameters, small evaluation indicates the goodness of a
manufacturing material. Therefore, we have taken complex neutrosophic complement of all
the evaluations over these two parameters. Results are given in Table 8.11.

Table 8.11: CNSS (fC̃N , E) (Example 8.5) (after equalization)
e1 e2 e3

M1 (0.3eiπ/2, 0.2eiπ/2, 0.7eiπ/2) (0.8ei2π/3, 0.3ei2π/3, 0.2ei2π/3) (0.2eiπ/2, 0.1eiπ/2, 0.7eiπ/2)

M2 (0.9eiπ , 0.2eiπ , 0.1eiπ) (0.2eiπ/3, 0.3eiπ/3, 0.9eiπ/3) (0.1eiπ/6, 0.4eiπ/6, 0.9eiπ/6)

M3 (0.6ei2π/3, 0.3ei2π/3, 0.5ei2π/3) (0.3eiπ/2, 0.1eiπ/2, 0.8eiπ/2) (0.1eiπ/4, 0.5eiπ/4, 0.7eiπ/4)

M4 (0.2eiπ/2, 0.6eiπ/2, 0.8eiπ/2) (0.6ei3π/4, 0.4ei3π/4, 0.3ei3π/4) (0.4ei2π/3, 0.3ei2π/3, 0.7ei2π/3)

Step 3. The complex neutrosophic soft ideal evaluation of each of the parameters is as
follows:
f+

C̃N
(e1) = (0.9eiπ, 0.6eiπ, 0.8eiπ); f+

C̃N
(e2) = (0.8ei

3π
4 , 0.4ei

3π
4 , 0.9ei

3π
4 );

f+

C̃N
(e3) = (0.4ei

2π
3 , 0.5ei

2π
3 , 0.9ei

2π
3 ).

Step 4. The bounded difference of each of the evaluations of the alternatives with respect to
a parameter ej from the corresponding f+

C̃N
(ej) are given in Table 8.12.

Step 5. The score value of each of the entries in Table 8.12 has been given in Table 8.13.
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Table 8.12: Complex neutrosophic bounded difference soft set (f	
C̃N
, E) (Example 8.5)

e1 e2 e3

M1 (0.6eiπ/2, 0.4eiπ/2, 0.1eiπ/2) (0eiπ/12, 0.1eiπ/12, 0.7eiπ/12) (0.2eiπ/6, 0.4eiπ/6, 0.2eiπ/6)

M2 (0ei0, 0.2ei0, 0.7ei0) (0.6ei5π/12, 0.1ei5π/12, 0ei5π/12) (0.3eiπ/2, 0.1eiπ/2, 0eiπ/2)

M3 (0.3eiπ/3, 0.3eiπ/3, 0.3eiπ/3) (0.5eiπ/4, 0.3eiπ/4, 0.1eiπ/4) (0.3ei5π/12, 0ei5π/12, 0.2ei5π/12)

M4 (0.7eiπ/2, 0eiπ/2, 0eiπ/2) (0.2ei0, 0ei0, 0.6ei0) (0ei0, 0.2ei0, 0.2ei0)

Step 6. Now by using linear max normalization process, the normalized evaluation of each
of the entries of Table 8.13 has been provided in Table 8.14.

Table 8.13: Score valued matrix

(Example 8.5)
e1 e2 e3

M1 0.64 0.53 0.59

M2 0.52 0.71 0.66

M3 0.59 0.66 0.65

M4 0.74 0.60 0.60

Table 8.14: Normalized score valued

matrix (Example 8.5)
e1 e2 e3

M1 0.86 0.75 0.89

M2 0.70 1 1

M3 0.79 0.93 0.98

M4 1 0.86 0.91

Step 7. Now, we have determined the exact weights of the parameters by using Subsection
8.6.2.
The given incomplete information about the weights of the parameters is,
P = {W1 ≥ 0.4; 0.1 ≤ W2 ≤ 0.9; W2 −W3 < 0.3; W3 ≥ 0.2}.
Then, the mean potentiality of each of the parameters is as follows:
me1 = (0.5ei2π/3, 0.375ei2π/3, 0.525ei2π/3); me2 = (0.475ei9π/16, 0.275ei9π/16, 0.55ei9π/16);
me3 = (0.2ei19π/48, 0.375ei19π/48, 0.75ei19π/48).
After that, the total complex neutrosophic distance of all the alternatives from the
corresponding mean potentiality mej associated with a parameter ej is, d̃e1 = 1.02;
d̃e2 = 1.2; d̃e3 = 0.75.
Now, to obtain the weights of the parameters, we have constructed a optimization model by
using the given incomplete information as follows:

max D̃(W ) = 1.02W1 + 1.2W2 + 0.75W3

s.t.,W ∈ P ;
0 ≤ Wj ≤ 1; j = 1, 2, .., n;
n∑
j=1

Wj = 1

 (8.13)

Solving the above optimization model, the weights of the parameters are,
W1 = 0.4; W2 = 0.4; W3 = 0.2.
Step 8. The group utility values of the alternatives are,
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ŜWcr (M1) = 0.822; ŜWcr (M2) = 0.88; ŜWcr (M3) = 0.884; ŜWcr (M4) = 0.926.
Step 9. The individual regret values of the alternatives are,
Ŝmaxcr (M1) = 0.344; Ŝmaxcr (M2) = 0.4; Ŝmaxcr (M3) = 0.372; Ŝmaxcr (M4) = 0.4.
Step 10. Then the compromising index of the alternatives are,
Ĉ(M1) = 0; Ĉ(M2) = 0.78; Ĉ(M3) = 0.55; Ĉ(M4) = 1. Here, we have considered
θ = 0.5.
Step 11. Ranking the alternatives.
The ranking order of the alternatives based on ŜWcr is, M1 > M2 > M3 > M4, the ranking
order of the alternatives based on Ŝmaxcr is, M1 > M3 > M2 = M4 and the ranking order of
the alternatives based on Ĉ is, M1 > M3 > M2 > M4.
Condition 1. Now we have seen that, condition 1 is satisfied as,
Ĉ(M3)− Ĉ(M1) = 0.55 > 1

4−1
= 0.33.

Condition 2. Again, M1 is best for both the cases of ŜWcr and Ŝmaxcr .
Hence, M1 is a compromise optimal solution for this decision-making problem.

Therefore, the manufacturing material alternative M1 can be selected in the automobile
industry.

8.7.3 An application of CNSVIMDM-approach in medical science

Proper disease diagnosis of a patient is a significant task in medical science. Several
researchers have proposed different mathematical models by using soft set theory to deal
with disease diagnosis problems. For instance, Basu et al. [22] proposed a fuzzy soft set
based balanced solution to detect the exact disease of a patient. Then, Das and Kar [50]
proposed a group decision-making approach by using intuitionistic fuzzy soft set theory
where, a set of four experts have been selected to detect the exact disease of a patient. But,
in these soft set based models, they have only considered the information about the ‘degree
of belongingness of a symptom’ for disease diagnosis. But, the information about the ‘time
duration of a symptom’ to a patient is also emergent here and to be considered for proper
diagnosis of the patient. Therefore, to solve these types of medical diagnosis problems, we
have used our proposed complex neutrosophic soft set based approach by considering two
information ‘belongingness of a symptom’ and ‘time duration of a symptom’ together.

Example 8.6 ( [22, 50]) Consider that, a patient has four symptoms such as,
{abdominal pain, fever, headache, weightloss} and the corresponding diseases related
to these four symptoms are {typhoid, peptic ulcer, food poisoning, acute viral
hepatitis}. Now assume that, a set of three experts have been selected to make a common
decision about ‘which disease is more likely to appear in a patient’.

Now, consider that, X = {typhoid (x1), peptic ulcer (x2), food poisoning (x3),
acute viral hepatitis (x4)} be the universal set and E = {abdominal pain (e1),
fever (e2), headache (e3), weightloss (e4)} be the set of corresponding parameters. The
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weights of the three parameters have been given initially in this group decision-making as,
W1 = 0.27, W2 = 0.22, W3 = 0.17, W4 = 0.34.

Table 8.15: CNSS (fC̃N1
, E) (Example 8.6)

e1 e2 e3

x1 (0.4eiπ/2, 0.2eiπ/2, 0.8eiπ/2) (0.6ei2π/3, 0.4ei2π/3, 0.2ei2π/3) (0.3eiπ/2, 0.4eiπ/2, 0.7eiπ/2)

x2 (1eiπ , 0.4eiπ , 0.3eiπ) (0.6eiπ/3, 0.3eiπ/3, 0.1eiπ/3) (0.8eiπ/6, 0.2eiπ/6, 0.3eiπ/6)

x3 (0.5ei2π/3, 0.2ei2π/3, 0.6ei2π/3) (0.4eiπ/2, 0.3eiπ/2, 0.7eiπ/2) (0.5eiπ/4, 0.3eiπ/4, 0.7eiπ/4)

x4 (0.1eiπ/2, 0.5eiπ/2, 0.7eiπ/2) (0.5ei3π/4, 0.2ei3π/4, 0.6ei3π/4) (0.2ei2π/3, 0.3ei2π/3, 0.8ei2π/3)

e4

x1 (0.7eiπ/3, 0.1eiπ/3, 0.2eiπ/3)

x2 (0.8eiπ/2, 0.3eiπ/2, 0.5eiπ/2)

x3 (0.1ei2π , 0.5ei2π , 0.7ei2π)

x4 (0.2eiπ/2, 0.6eiπ/2, 0.4eiπ/2)

Table 8.16: CNSS (fC̃N2
, E) (Example 8.6)

e1 e2 e3

x1 (0.3eiπ/2, 0.3eiπ/2, 0.8eiπ/2) (0.5ei2π/3, 0.1ei2π/3, 0.4ei2π/3) (0.2eiπ/2, 0.1eiπ/2, 0.8eiπ/2)

x2 (0.8eiπ , 0.4eiπ , 0.2eiπ) (0.7eiπ/3, 0.4eiπ/3, 0.1eiπ/3) (0.5eiπ/6, 0.1eiπ/6, 0.4eiπ/6)

x3 (0.5ei2π/3, 0.1ei2π/3, 0.7ei2π/3) (0.3eiπ/2, 0.1eiπ/2, 0.8eiπ/2) (0.1eiπ/4, 0.5eiπ/4, 0.7eiπ/4)

x4 (0.5eiπ/2, 0.3eiπ/2, 0.6eiπ/2) (0.5ei3π/4, 0.6ei3π/4, 0.7ei3π/4) (0.4ei2π/3, 0.3ei2π/3, 0.6ei2π/3)

e4

x1 (0.4eiπ/3, 0.1eiπ/3, 0.2eiπ/3)

x2 (0.6eiπ/2, 0.3eiπ/2, 0.2eiπ/2)

x3 (0.1ei2π , 0.4ei2π , 0.7ei2π)

x4 (0.2eiπ/2, 0.2eiπ/2, 0.6eiπ/2)

Table 8.17: CNSS (fC̃N3
, E) (Example 8.6)

e1 e2 e3

x1 (0.2eiπ/2, 0.2eiπ/2, 0.7eiπ/2) (0.4ei2π/3, 0.3ei2π/3, 0.2ei2π/3) (0.2eiπ/2, 0.1eiπ/2, 0.7eiπ/2)

x2 (0.9eiπ , 0.2eiπ , 0.1eiπ) (0.7eiπ/3, 0.3eiπ/3, 0.4eiπ/3) (0.6eiπ/6, 0.4eiπ/6, 0.3eiπ/6)

x3 (0.5ei2π/3, 0.3ei2π/3, 0.5ei2π/3) (0.3eiπ/2, 0.1eiπ/2, 0.8eiπ/2) (0.3eiπ/4, 0.4eiπ/4, 0.6eiπ/4)

x4 (0.2eiπ/2, 0.4eiπ/2, 0.8eiπ/2) (0.5ei3π/4, 0.4ei3π/4, 0.3ei3π/4) (0.4ei2π/3, 0.3ei2π/3, 0.8ei2π/3)
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e4

x1 (0.5eiπ/3, 0.1eiπ/3, 0.2eiπ/3)

x2 (0.8eiπ/2, 0.5eiπ/2, 0.3eiπ/2)

x3 (0.1ei2π , 0.5ei2π , 0.7ei2π)

x4 (0.2eiπ/2, 0.3eiπ/2, 0.7eiπ/2)

Now, Three corresponding CNSSs given by three experts (D = {d1, d2, d3}) are
(fC̃N1

, E), (fC̃N2
, E), (fC̃N3

, E) which have been given in Tables 8.15, 8.16, 8.17
respectively. In each of the membership magnitudes, amplitude term indicates the
‘belongingness of a symptom’ and phase term indicates the ‘time duration of the said
symptom’. All the data has been collected based on 10 consecutive days. The value 2π has
been taken in the phase term instead of 10 days.
In Figure 8.6, the graphical framework of this decision-making problem has been given.

Solution. We have solved this group decision-making problem by using our proposed
Algorithm II (CNSVIMDM-approach).
Step 1. Here, all the parameters are benefit parameters. Therefore, we do not need to
equalize the sense of all the parameters.
Step 2. Now, we have constructed a resultant complex neutrosophic soft set (fC̃N , E) form
these three CNSSs (fC̃N1

, E), (fC̃N2
, E) and (fC̃N3

, E) by using complex neutrosophic soft
intersection operator.
By using complex neutrosophic soft standard intersection, the resultant has been given in
Table 8.18.

Table 8.18: Resultant CNSS (fC̃N , E) (Example 8.6)
e1 e2 e3

x1 (0.2eiπ/2, 0.2eiπ/2, 0.7eiπ/2) (0.4ei2π/3, 0.1ei2π/3, 0.2ei2π/3) (0.2eiπ/2, 0.1eiπ/2, 0.7eiπ/2)

x2 (0.8eiπ , 0.2eiπ , 0.1eiπ) (0.6eiπ/3, 0.3eiπ/3, 0.1eiπ/3) (0.5eiπ/6, 0.1eiπ/6, 0.3eiπ/6)

x3 (0.5ei2π/3, 0.1ei2π/3, 0.5ei2π/3) (0.3eiπ/2, 0.1eiπ/2, 0.7eiπ/2) (0.1eiπ/4, 0.3eiπ/4, 0.6eiπ/4)

x4 (0.1eiπ/2, 0.3eiπ/2, 0.6eiπ/2) (0.5ei3π/4, 0.2ei3π/4, 0.3ei3π/4) (0.2ei2π/3, 0.3ei2π/3, 0.6ei2π/3)

e4

x1 (0.4eiπ/3, 0.1eiπ/3, 0.2eiπ/3)

x2 (0.6eiπ/2, 0.3eiπ/2, 0.2eiπ/2)

x3 (0.1ei2π , 0.4ei2π , 0.7ei2π)

x4 (0.2eiπ/2, 0.2eiπ/2, 0.4eiπ/2)

Step 3. Then, the complex neutrosophic soft ideal evaluation of each of the parameters is as
follows:
f+

C̃N
(e1) = (0.8eiπ, 0.3eiπ, 0.7eiπ); f+

C̃N
(e2) = (0.6ei3π/4, 0.3ei3π/4, 0.7ei3π/4);

f+

C̃N
(e3) = (0.5ei2π/3, 0.3ei2π/3, 0.7ei2π/3); f+

C̃N
(e4) = (0.6ei2π, 0.4ei2π, 0.7ei2π);

Step 4. The bounded difference of each of the evaluations of the alternatives with respect to
a parameter ej from the corresponding f+

C̃N
(ej) is given in Table 8.19.
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Figure 8.6: Modeling framework of case study 8.7.3
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Table 8.19: Complex neutrosophic bounded difference soft set (f	
C̃N
, E) (Example 8.6)

e1 e2 e3

x1 (0.6eiπ/2, 0.1eiπ/2, 0eiπ/2) (0.2eiπ/12, 0.2eiπ/12, 0.5eiπ/12) (0.3eiπ/6, 0.2eiπ/6, 0eiπ/6)

x2 (0ei0, 0.1ei0, 0.6ei0) (0ei5π/12, 0ei5π/12, 0.6ei5π/12) (0eiπ/2, 0.2eiπ/2, 0.4eiπ/2)

x3 (0.3eiπ/3, 0.2eiπ/3, 0.2eiπ/3) (0.3eiπ/4, 0.2eiπ/4, 0eiπ/4) (0.4ei5π/12, 0ei5π/12, 0.1ei5π/12)

x4 (0.7eiπ/2, 0eiπ/2, 0.1eiπ/2) (0.1ei0, 0.1ei0, 0.4ei0) (0.3ei0, 0ei0, 0.1ei0)

e4

x1 (0.2ei5π/3, 0.3ei5π/3, 0.5ei5π/3)

x2 (0ei3π/2, 0.1ei3π/2, 0.5ei3π/2)

x3 (0.5ei0, 0ei0, 0ei0)

x4 (0.4ei3π/2, 0.2ei3π/2, 0.3ei3π/2)

Step 5. Now, the score values of the entries in Table 8.19 have been given in Table 8.20. The
normalize score values of Table 8.20 have been provided in Table 8.21.

Table 8.20: Score valued matrix

(Example 8.6)
e1 e2 e3 e4

x1 0.71 0.58 0.67 0.43

x2 0.55 0.53 0.52 0.44

x3 0.62 0.66 0.68 0.75

x4 0.72 0.60 0.7 0.52

Table 8.21: Normalize score valued ma-

trix (Example 8.6)
e1 e2 e3 e4

x1 0.99 0.88 0.96 0.57

x2 0.76 0.80 0.74 0.59

x3 0.86 1 0.97 1

x4 1 0.91 1 0.69

Step 6. The group utility values of the alternatives over all the parameters are as follows:
ŜWcr (x1) = 0.818; ŜWcr (x2) = 0.708; ŜWcr (x3) = 0.957; ŜWcr (x4) = 0.875.
Step 7. The individual regret values of the alternatives over all the parameters are as follows:
Ŝmaxcr (x1) = 0.267; Ŝmaxcr (x2) = 0.205; Ŝmaxcr (x3) = 0.34; Ŝmaxcr (x4) = 0.270.
Step 8. The compromising index of the alternatives over all the parameters are as follows,
Ĉ(x1) = 0.45; Ĉ(x2) = 0; Ĉ(x3) = 1; Ĉ(x4) = 0.56. Here, we have considered θ = 0.5
Step 9. The ranking of the alternatives based on ŜWcr , Ŝmaxcr and Ĉ is same as,
x2 > x1 > x4 > x3.
Condition 1. Since, Ĉ(x1)− Ĉ(x2) = 0.45 > 1

4−1
= 0.33. So, Condition 1 is truly satisfied.

Condition 2. Again, x2 is best for both the cases ŜWcr and Ŝmaxcr .
So, Condition 2 is also satisfied here.
Thus, the alternative x2 is a compromise optimal solution for this decision-making problem.

Hence, we can conclude that, the patient is suffered by the disease peptic ulcer (x2).
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8.8 Comparative study and discussion

In this chapter, we have proposed a new approach to evaluate the best alternative from a
complex neutrosophic soft set based decision-making problem by using VIKOR approach. In
this section, we have examined the stability of the ranking results of our proposed approach
through a sensitivity analysis and a comparative analysis. In sensitivity analysis part, we
have examined the robustness of our approach for different values of the parameter θ which
is employed in our algorithm and in comparative analysis part, we have compared our results
with some well known exiting methodologies to verify the validity of our proposed approach.

8.8.1 Sensitivity analysis based on the parameter θ

In our methodology, the parameter θ has been assigned as a weight of the strategy of
maximum group of utility and (1 − θ) has been assigned as a weight of the strategy of
minimum individual regret to evaluate the compromising index of an alternative, as defined
in Equation 8.5. Here, θ can adopt any value from 0 to 1. In the previous all examples, all
the results have been taken by keeping the value of θ as 0.5 i.e., by giving equal importance
on the both of maximum group of utility and minimum individual regret. But since, θ can
take any value from 0 to 1, so, we have to verify the stability of the ranking results for
different values of θ. Therefore, we have given a sensitivity analysis based on the parameter
θ. The previous illustrated examples (Example 8.4, Example 8.5, Example 8.6) have been
used here to conduct this process. In Figures 8.7, 8.8, 8.9, the variation of compromising
index values of different alternatives for different values of θ have been provided based on
Example 8.4, Example 8.5 and Example 8.6 respectively.

Now, from Figures 8.7 it is observed that, for any value of θ from 0.1 to 1, the ranking
order of the four candidates is same as, C1 > C4 > C2 > C3 and when θ = 0, the ranking
order of the four candidates is, C1 > C4 > C2 = C3. So we can conclude that, the parameter
θ did not affect on the ranking order of the alternatives in the interval [0.1, 1]. But when
θ = 0, i.e., when, one focuses only on the individual evaluations of the parameters
(minimum individual regret) of the candidates, then, we can’t say which one is at the third
position and which one is at the fourth position between C2 and C3.

From Figure 8.8 we have seen that, the ranking order of the material alternatives is same
for any value of the parameter θ from 0.1 to 0.9. But, when θ is tending to 1, then the
ranking order of M2 has been increased and the ranking order of M3 has been decreased.
i.e., when one focuses only on the group utility score (utility measure) of the material
alternatives over all the parameters, then the risk level is high for being that, M2 is best than
M3 and when θ = 0, the ranking order of the alternatives has been slightly changed as,
M1 > M3 > M2 = M4 i.e., when, one focuses only on the minimum individual regret
(regret measure) of the material alternatives over all the parameters then, we can’t say which
one is placed at third position and which one is placed at the fourth position between M2 and
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Figure 8.7: Sensitivity analysis based on Example 8.4

Figure 8.8: Sensitivity analysis based on Example 8.5

M4.
Again, from Figure 8.9 we have seen that, different values of θ do not effect on the

ranking order of the alternatives x1, x2, x3, x4.
So, from this discussion it is observed that, different values of the parameter θ may

make an effect on the final ranking order of the alternatives in a problem. Since, in our
method, decision-maker can give the importance to the strategy of maximum group of utility
(utility measure) and minimum individual regret (regret measure) as he/she likes, so when,
he/she changes his/her importance to the maximum group of utility and minimum individual
regret, then obviously there may exist a different ranking result of the associated
alternatives. So, changing of the parameter θ indicates the changing of the ranking order of
the alternatives, which supports the results of the sensitivity analysis with respect to the
parameter θ. Therefore, from this sensitivity analysis it is concluded that, our approach is
more realistic.
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Figure 8.9: Sensitivity analysis based on Example 8.6

Figure 8.10: Comparative analysis

8.8.2 Comparative analysis of our proposed approach
Validation or confirmation of a new approach can be tested by comparing its resulting values
with the existing methods. Now, it is seen that, complex neutrosophic framework is a super
set with respect to fuzzy valued framework. But since, to solve our considered soft set based
decision-making problems under the complex neutrosophic framework, there exists no
method in literature till now. However, in fuzzy valued framework, some methodologies
such as TOPSIS method [58], Kong et al. method [92] etc. have been saved in literature. So,
to compare the results obtain from our method with the results using TOPSIS and Kong et
al. method [92], we would transform all the complex neutrosophic values of a complex
neutrosophic soft set into some real values (fuzzy soft set) by using score function
(Definition 8.5). Because, the score value of a complex neutrosophic number by using score
function is a reflection of the complex neutrosophic number in favor of truth degree. The
schematically diagram of this discussion has been given in Figure 8.10. Now, in the
following, we have discussed a comparative study by using some existing fuzzy valued
(truth membership) methods to verify the validity of our proposed approach.

• Comparison based on Example 8.4
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The solution of Example 8.4 through our proposed approach has been illustrated in
Subsection 8.7.1. Then, after transforming all the given complex neutrosophic values (Table
8.5) into real values by using score function, the resultant score values are given in Table
8.22. So, Table 8.22 is the reflection of Table 8.5. Since, in this example, the final ranking
result has been taken by using the weights of the parameters as, W1 = 0.2; W2 = 0.3;
W3 = 0.2; W4 = 0.3, therefore, before applying any fuzzy valued methodology, we have
constructed a weighted score matrix (Table 8.23) (weighted fuzzy soft set) by multiplying
the score values (Table 8.22) of each of the alternatives over a parameter ej with its
associated parameter weight Wj .

Table 8.22: Score matrix based on

Table 8.5 (Fuzzy soft set)
e1 e2 e3 e4

C1 0.52 0.66 0.52 0.72

C2 0.68 0.47 0.45 0.46

C3 0.56 0.52 0.46 0.32

C4 0.46 0.59 0.51 0.54

Table 8.23: Weighted Score matrix

(Weighted fuzzy soft set)
e1 e2 e3 e4

C1 0.104 0.198 0.104 0.216

C2 0.136 0.141 0.09 0.138

C3 0.112 0.156 0.092 0.096

C4 0.092 0.177 0.102 0.162

Now, we have applied different decision-making methods to evaluate the best alternative
from Table 8.23. The ranking results are given in Table 8.24.

Table 8.24: Comparison Table based on Example 8.4
C1 > C4 > C2 > C3

Our approach (θ = 0.5)
√

TOPSIS method [58]
√

Kong et al. ( [92]) method
√

Since, for each of the methods, the ranking of the alternatives is, C1 > C4 > C2 > C3,
therefore, this ranking order has been considered as the ideal ranking of this problem. Thus
we have seen that, by using our proposed approach, the ranking result of Example 8.4 is
consistent.

• Comparison based on Example 8.5

The solution of Example 8.5 by using our approach has been illustrated in Subsection 8.7.2.
Now, after transforming all the complex neutrosophic values (Table 8.11) into score values
by using score function, the resultants are given in Table 8.25. So, Table 8.25 is the
reflection of Table 8.11. In this problem, the weights of the parameters are, W1 = 0.4;
W2 = 0.4; W3 = 0.2. Therefore, we have constructed weighted score matrix, by multiplying
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the score values of each of the alternatives over a parameter ej with the associated parameter
weight Wj , as given in Table 8.26.

Table 8.25: Score matrix based on

Table 8.11 (Fuzzy soft set) (Example

8.5)
e1 e2 e3

M1 0.525 0.661 0.523

M2 0.686 0.472 0.453

M3 0.578 0.525 0.462

M4 0.453 0.588 0.511

Table 8.26: Weighted score matrix

(Weighted fuzzy soft set)
e1 e2 e3

M1 0.21 0.264 0.105

M2 0.274 0.189 0.091

M3 0.231 0.21 0.092

M4 0.181 0.235 0.102

Now, by applying different fuzzy valued decision-making methods on Table 8.26, the
ranking results are given in Table 8.27.

Table 8.27: Comparison Table based on Example 8.5
M1 > M3 > M2 > M4 M1 > M2 > M3 > M4 M1 > M3 > M2 = M4

Our approach (θ = 0.5)
√

Our approach (θ = 0)
√

Our approach (θ = 1)
√

TOPSIS method [58]
√

Kong et al. ( [92]) method
√

From Table 8.27 we have seen that, by using our proposed approach, when, θ = 0.5,
i.e., when one gives equal importance on the both of maximum total group of utility and
minimum individual regret, then the rank is, M1 > M3 > M2 > M4 and when, θ = 1,
i.e., when one gives importance only on the maximum total group of utility then, the rank
as, M1 > M2 > M3 > M4. Moreover, we have seen that, TOPSIS method [58] and Kong
et al. [92] method have given the same ranking order as, M1 > M2 > M3 > M4. Now,
the background of TOPSIS method is, distance of an alternative from ideal solution and anti
ideal solution over all the parameters and the background of Kong et al. [92] method is, the
sum of the total evaluations over all the parameters (fuzzy choice value) of an alternative.
So, the key idea of both the TOPSIS method [58] and Kong et al. [92] method is same (give
the importance only on the total satisfaction over all the parameters not on the individual
satisfaction of a parameter). This situation can also be controlled through our algorithm by
taking θ = 1. From Table 8.27 it is observed that, the ranking result of our method is same
with TOPSIS method [58] and Kong et al. [92] method when θ = 1. So, in this situation,
the ranking result of our method is consistent. But when, in a decision-making problem,
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the satisfaction of an individual parameter is important not the total satisfaction of all the
parameters, then TOPSIS method [58] and Kong et al. [92] method are unsuitable whereas,
in that situation, our method can solve this problem by taking θ = 0. So, by taking different
values of the parameter θ we can get more accurate results of a decision-making problem.
Therefore we can conclude that, the ranking result of our method is valid in this example.

• Comparison based on Example 8.6

Example 8.6 has been solved by our proposed approach at Subsection 8.7.3.
Now, by apply score function on Tables 8.15, 8.16, and 8.17, the score values are given

in Tables 8.28, 8.29 and 8.30.

Table 8.28: Score matrix based on

Table 8.15 (Fuzzy soft set) (Example

8.6)
e1 e2 e3 e4

x1 0.525 0.661 0.492 0.706

x2 0.634 0.672 0.703 0.625

x3 0.561 0.525 0.562 0.317

x4 0.442 0.554 0.461 0.492

Table 8.29: Score matrix based on Table

8.16 (Fuzzy soft set) (Example 8.6)
e1 e2 e3 e4

x1 0.492 0.611 0.508 0.655

x2 0.617 0.672 0.653 0.642

x3 0.561 0.525 0.462 0.333

x4 0.558 0.471 0.528 0.525

Table 8.30: Score matrix based on Table 8.17 (Fuzzy soft set) (Example 8.6)
e1 e2 e3 e4

x1 0.508 0.594 0.525 0.672

x2 0.683 0.639 0.636 0.625

x3 0.561 0.525 0.529 0.317

x4 0.458 0.571 0.494 0.492

Then, by using fuzzy AND product the resultant score matrix from the three score matrices
(Tables 8.28, 8.29 and 8.30) has been given in Table 8.31. Then by using the weights of the
parameters (W1 = 0.27; W2 = 0.22; W3 = 0.17; W4 = 0.34), the resultant weighted score
values are given in Table 8.32.
Now, the ranking of the alternatives by using different methods has been given Table 8.33.
From Table 8.33 we have seen that, the ranking order of the alternatives through every method
is same. so we can conclude that, the ranking result of our proposed approach is consistent
in this example.
So, from the above illustration, what is the status of our method?
The answer of this question is that, our proposed approach is very effective because of the
following reasons.
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Table 8.31: Resultant score ma-

trix (Fuzzy soft set)
e1 e2 e3 e4

M1 0.492 0.594 0.492 0.655

M2 0.617 0.639 0.636 0.625

M3 0.561 0.525 0.462 0.317

M4 0.442 0.471 0.461 0.492

Table 8.32: Weighted resultant score ma-

trix (Weighted fuzzy soft set)
e1 e2 e3 e4

x1 0.133 0.131 0.084 223

x2 0.166 0.140 0.108 212

x3 0.151 0.116 0.078 108

x4 0.119 0.104 0.078 167

Table 8.33: Comparison Table based on Example 8.6
x2 > x1 > x4 > x3

Our approach (θ = 0.5)
√

TOPSIS method [58]
√

Kong et al. method [92]
√

• The domain of our considered decision-making problem is large than the existing one.

• There is no existing methodology to solve the real-life problems in this domain till now.

• In our method, two directions such as, ‘maximization of total group of utility’ and
‘minimization of individual regret’ have been considered together through a parameter
θ by which a decision maker can get an exact direction by changing the value of θ
according to his/her needs. But, in TOPSIS [58] method or Kong et al. method [92],
there is no such facility.

• Further, in our approach, we have obtained a compromise optimal solution instead of a
single optimal solution of a considered complex neutrosophic soft set based decision-
making problem to overcome the problems in emergency situations. But, in TOPSIS-
method [58] or Kong et al. [92] method, there is no such advantage.

Hence, from the above analysis it is concluded that, our proposed approach is valid and is
very effective to solve decision-making problems involving a second dimension.

8.9 Conclusion

This chapter presents a complex neutrosophic soft set based decision-making by using
VIKOR method. To reach this goal, few necessary operations and properties of complex
neutrosophic sets and complex neutrosophic soft sets have been introduced.
The contributions of this chapter can be summarized as follows:
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• Some new union operations (complex nuetrosophic standard union, complex
neutrosphic algebraic sum, complex neutrosophic bold sum), intersection operations
(complex neutrosophic standard intersection, complex neutrosophic product, complex
neutrosophic bold intersection) and aggregation operations (complex neutrosophic
arithmetic mean aggregation, complex neutrosophic geometric mean aggregation,
complex neutrosophic harmonic mean aggregation) of complex neutrosophic sets have
been proposed.

• The above union operations and intersection operations of complex neutrosophic sets
have been generalized to complex neutrosophic soft sets.

• Score function of a complex neutrosophic number has been initiated.

• Two decision-making approaches have been developed by using VIKOR method to
solve single decision-maker and multiple decision-makers based decision-making
problems by using complex neutrosophic soft set theory.

• Moreover, to show the working progress of the proposed approaches, we have applied
these algorithms in company’s manager selection problem, medical diagnosis problem,
sustainable manufacturing material selection problem etc.

• The sensitivity analysis of our proposed approach based on the parameter θ has also
been illustrated.

• Also besides, we have discussed the validity and effectiveness of our proposed
approach.

As further research, one can develop some algebraic structures of complex neutrosophic soft
sets such as complex neutrosophic soft groups, complex neutrosophic soft rings etc.
Moreover, distance measure is a useful tool that can solve many decision-making problems.
So, one can propose several types of distance measures or similarity measures of complex
neutrosophic soft sets. Further, single-valued neutrosophic 2-tuple linguistic environment
( [166]), trapezoidal fuzzy environment ( [165], [167]), hesitant fuzzy linguistic environment
( [168]) etc. are very effective tools to solve real-life related decision-making problems. So,
one can develop our proposed approach to these effective frameworks.
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